• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Elipsoida



    Podstrony: [1] [2] 3
    Przeczytaj także...
    Elipsoida obrotowa – powierzchnia lub bryła powstała na skutek obrotu elipsy wokół jej osi symetrii. W przypadku Ziemi osią tą jest mała oś elipsy, czyli oś ziemska.Powierzchnia to dwuwymiarowy odpowiednik pojęcia krzywej. Także potoczne określenie pola powierzchni (np. mówiąc o "powierzchni w km²" mamy na myśli właśnie pole powierzchni).
    Zobacz też[ | edytuj kod]
  • geoida
  • sferoida
  • Przypisy[ | edytuj kod]

    1. I.N. Bronsztejn, K.A. Siemiendiajew: Matematyka – Poradnik encyklopedyczny. Wyd. 6. Warszawa: PWN, 1976, s. 300.


    Podstrony: [1] [2] 3



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Kwadryka lub powierzchnia drugiego stopnia – powierzchnia dana równaniem drugiego stopnia ze względu na współrzędne x ,   y ,   z {displaystyle x, y, z;} :
    Równanie parametryczne - pojęcie matematyczne definiujące relację przy użyciu parametrów. Najprostsze zastosowanie widać na przykładzie wziętym z zagadnień kinematyki kiedy to jednym parametrem czasu można opisać położenie ciała, jego prędkość i inne wielkości fizyczne dotyczące ciała w ruchu. Ogólnie przy pomocy równań parametrycznych definiuje się relację jako zbiór równań.
    Elipsa – w geometrii ograniczony przypadek krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą.
    Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).
    Bryła geometryczna – zbiór punktów przestrzeni trójwymiarowej homeomorficzny z pewnym wielościanem. W innym ogólniejszym ujęciu jest to trójwymiarowa figura geometryczna.
    Geoida – bryła, której powierzchnia w każdym miejscu jest prostopadła do pionu wyznaczonego przez siłę ciężkości. Geoida jest teoretyczną powierzchnią, na której potencjał siły ciężkości Ziemi jest stały, równy potencjałowi siły ciężkości na średnim poziomie mórz otwartych i przedłużoną umownie pod powierzchnią lądów. Ponieważ zawiera ona lustro wody w morzach i oceanach dodatkowo określana jest jako Geoida Zerowa. Jako powierzchnia ekwipotencjalna, geoida w każdym swym punkcie jest prostopadła do kierunku siły ciężkości (lokalnego pionu).

    Reklama

    Czas generowania strony: 0.015 sek.