• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Element przestępny

    Przeczytaj także...
    Andrzej Stanisław Mostowski (ur. 1 listopada 1913 we Lwowie, zm. 22 sierpnia 1975 w Vancouver, Kanada) – polski matematyk zajmujący się głównie podstawami matematyki, przedstawiciel warszawskiej szkoły matematycznej.Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.

    Element algebraiczny – uogólnienie pojęcia liczby algebraicznej na rozszerzenia dowolnych ciał. Liczby algebraiczne to elementy algebraiczne ciała liczb zespolonych nad ciałem liczb wymiernych.

    Definicja[]

    Niech będzie podciałem ciała . Element nazywamy elementem algebraicznym nad wtedy i tylko wtedy, gdy istnieje niezerowy wielomian o współczynnikach z ciała , którego pierwiastkiem jest .

    Andrzej Białynicki-Birula (ur. 26 grudnia 1935 w Nowogródku) – polski matematyk specjalizujący się w geometrii algebraicznej, jeden z pionierów algebry różniczkowej, profesor zwyczajny, członek rzeczywisty PAN, autor podręczników uniwersyteckich do algebry. Jego wczesne wyniki dotyczyły obszaru na granicy logiki i algebry. Współpracował wówczas z Heleną Rasiową. Opublikował też pracę naukową dotyczącą topologii algebraicznej.Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.

    Element nie będący algebraicznym nad nazywamy elementem przestępnym nad w ciele .

    Własności[]

  • Zbiór wszystkich elementów ciała algebraicznych nad tworzy ciało, zwane rozszerzeniem algebraicznym ciała .
  • Jeśli jest elementem algebraicznym nad , to
  • (por. oznaczenia w artykule rozszerzenia ciał)
  • Dla każdego elementu algebraicznego nad istnieje dokładnie jeden unormowany wielomian pierwszy o współczynnikach z ciała (tj. element pierwszy w pierścieniu ), którego pierwiastkiem jest . Wielomian nazywamy wielomianem minimalnym elementu algebraicznego . Zachodzi . Stopień ten nazywamy stopniem elementu algebraicznego .
  • Bibliografia[]

  • Andrzej Białynicki-Birula: Zarys algebry. Warszawa: PWN, 1987.
  • Andrzej Mostowski, Marceli Stark: Elementy algebry wyższej. Warszawa: PWN, 1975.
  • (window.RLQ=window.RLQ||).push(function(){mw.log.warn("Gadget \"edit-summary-warning\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"wikibugs\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"ReferenceTooltips\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"main-page\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");});
    Definicja intuicyjna: Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne.Rozszerzenie ciała - w teorii ciał jest to większe w sensie inkluzji ciało zawierające dane ciało. Na przykład, ciało liczb rzeczywistych jest rozszerzeniem ciała liczb wymiernych; ciało liczb zespolonych jest rozszerzeniem ciał liczb rzeczywistych (więc także wymiernych). Rozszerzenia ciał są centralnym pojęciem teorii Galois. Wyróżnia się wiele rodzajów rozszerzeń ciał ze względu na ich własności.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.076 sek.