• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Element neutralny



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą, ani liczbą złożoną.Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.

    Element neutralny – element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.

    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).
    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    1 (jeden, jedność) – liczba naturalna następująca po 0 i poprzedzająca 2. 1 jest też cyfrą wykorzystywaną do zapisu liczb w różnych systemach, np. w dwójkowym (binarnym), ósemkowym, dziesiętnym i szesnastkowym systemie liczbowym. Każda liczba całkowita jest podzielna przez 1.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Odejmowanie – jedno z czterech podstawowych działań arytmetycznych, działanie odwrotne do dodawania. Odejmowane obiekty to odpowiednio odjemna i odjemnik, wynik zaś nazywany jest różnicą.
    Funkcja tożsamościowa a. identycznościowa – w matematyce funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego; intuicyjnie funkcja, która „nic nie zmienia”.

    Reklama

    Czas generowania strony: 0.054 sek.