• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Elektrodynamika kwantowa



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Nagroda Nobla w dziedzinie fizyki, to uznawane za najbardziej prestiżowe wyróżnienie za wybitne osiągnięcia naukowe. Przyznawana jest ona od 1901 roku przez Fundację Noblowską.Teorie pól kwantowych (ang. QFT – Quantum Field Theory) – współczesne teorie fizyczne tłumaczące oddziaływania podstawowe. Są one rozwinięciem mechaniki kwantowej zapewniającym jej zgodność ze szczególną teorią względności.
    Spojrzenie Feynmana na elektrodynamikę kwantową[]

    Wprowadzenie[]

    Pod koniec życia Richard Feynman dał serię wykładów na temat QED dla szerszej publiczności (ang. QED. The Strange Theory of Light and Matter, 1985). Wykłady te zostały opublikowane w Polsce jako QED. Osobliwa teoria światła i materii, klasyczna, niematematyczna pozycja, przedstawiająca punkt widzenia opisany poniżej.

    Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.

    Kluczowym elementem reprezentacji Feynmana są trzy podstawowe akcje:

  • Foton przemieszcza się z jednego punktu czasoprzestrzeni do innego.
  • Elektron przemieszcza się z jednego punktu czasoprzestrzeni do innego.
  • Elektron emituje lub absorbuje foton w danym miejscu i czasie.
  • Akcje te są reprezentowane w postaci wizualnych stenogramów przez trzy podstawowe elementy diagramów Feynmana: falowana linia dla fotonu, prosta linia dla elektronu oraz połączenie dwóch linii prostych i jednej falowanej jako reprezentacja emisji lub absorpcji fotonu przez elektron. Wszystkie one są pokazane na rysunku z prawej.

    Czteropotencjał, w teorii względności potencjał pola elektrycznego φ oraz potencjał pola magnetycznego A łączy się w czterowektor A zwany czteropotencjałem. Wektory pól E i B są opisywane przez tensor pola elektromagnetycznego, które są opisywane w metryce w szczególnej teorii względności o sygnaturze (+,-,-,-).Mikrofale – rodzaj promieniowania elektromagnetycznego o długości fali pomiędzy podczerwienią i falami ultrakrótkimi, zaliczane są do fal radiowych. W różnych opracowaniach spotyka się różne zakresy promieniowania uznawanego za promieniowanie mikrofalowe, przykładowo od 1 mm (częstotliwość 300 GHz) do 30 cm (1 GHz), częstotliwość = 3·10 ÷ 3·10 Hz, a długości λ = 10 ÷ 0,1 m . Ten zakres pokrywa również pasma UHF oraz EHF (fale milimetrowe).

    Ważnym jest, aby nie nadinterpretowywać tych diagramów. Nie implikują one nic na temat tego, w jaki sposób cząstka dostaje się z jednego punktu do drugiego. Diagram nie oznacza, że cząstki poruszają się po linii prostej lub falowanej. Nie sugerują, że cząstki poruszają się ze stałą prędkością. Fakt, że foton jest często reprezentowany, przez konwencję, w postaci linii falowanej zamiast prostej, nie oznacza, że jest on bardziej falowy niż elektron. Ilustracje są po prostu symbolami następujących akcji, wymienionych powyżej: fotony i elektrony przemieszczają się, jakoś, z punktu do punktu, i elektrony, jakoś, emitują i absorbują fotony. Nie wiemy, jak to się dzieje, ale teoria mówi nam, z jakim prawdopodobieństwem możemy się tych rzeczy spodziewać.

    Działanie – podstawowe pojęcie mechaniki teoretycznej. Wyraża się w jednostkach iloczynu energii i czasu, bądź pędu i drogi. Działanie to całka lagranżjanu układu między dwoma stanami:Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Wraz z obrazkowymi stenogramami dla akcji Feynman wprowadził inny rodzaj stenogramów, reprezentujących wielkości numeryczne prawdopodobieństw. Gdy foton porusza się z jednego miejsca i czasu – na stenogramie, A – do innego – na stenogramie, B, przyporządkowana temu wielkość jest zapisana w stenogramie Feynmana P(A → B). Podobna wartość dla elektronu poruszającego się z C do D jest zapisywana jako E(C → D). Wielkość, która mówi nam, z jakim prawdopodobieństwem dojdzie do emisji lub absorpcji fotonu, nazwał j. Jest to powiązane, choć nie jest tym samym, ze zmierzonym ładunkiem elektrycznym elektronu, e.

    Operatory kreacji i anihilacji – operatory stosowane w drugiej kwantyzacji zdefiniowane i działające w przestrzeni Foka (Focka) na stany wielocząstkowe. Operatory te oznaczane są jako:Emisja spontaniczna zachodzi wtedy, gdy elektrony znajdujące się na poziomach wzbudzonych w sposób spontaniczny wracają na niższe poziomy energetyczne, emitując przy tym fotony.

    QED jest oparta na założeniu, że złożone oddziaływania wielu elektronów i fotonów można przedstawić dopasowując do siebie odpowiedni zbiór przedstawionych wyżej trzech bloków, a następnie użyć wielkości prawdopodobieństwa do obliczenia każdej skomplikowanej interakcji. Okazuje się, że podstawowa idea QED może być wyklarowana przez założenie, że wspomniane powyżej wartości są zwykłymi, codziennymi prawdopodobieństwami (upraszczając książkę Feynmana). Zostanie to później skorygowane przez włączenie specyficznej kwantowej matematyki, za Feynmanem.

    Linia spektralna — ciemna lub jasna linia w jednolitym, ciągłym widmie, powstającą wskutek nadmiaru lub deficytu fotonów (w porównaniu z pobliskimi częstotliwościami) w wąskim zakresie częstotliwości.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Podstawowe zasady rządzące prawdopodobieństwami są następujące: a) jeśli dane zdarzenie może zajść na kilka różnych sposobów, to prawdopodobieństwo jego zajścia jest sumą prawdopodobieństw zajścia każdego z tych sposobów, oraz b) jeśli proces zawiera pewną liczbę niezależnych podprocesów, to prawdopodobieństwo jego zajścia będzie iloczynem prawdopodobieństwa zajścia każdego z tych podprocesów.

    Foton (gr. φως – światło, w dopełniaczu – φοτος, nazwa stworzona przez Gilberta N. Lewisa) jest cząstką elementarną, nie posiadającą ładunku elektrycznego ani momentu magnetycznego, o masie spoczynkowej równej zero (m0 = 0), liczbie spinowej s = 1 (fotony są zatem bozonami). Fotony są nośnikami oddziaływań elektromagnetycznych, a ponieważ wykazują dualizm korpuskularno-falowy, są równocześnie falą elektromagnetyczną.Szereg – konstrukcja umożliwiająca wykonanie uogólnionego dodawania przeliczalnej liczby składników. Przykładem znanego szeregu jest dychotomia Zenona z Elei

    Podstawowe konstrukcje[]

    Załóżmy, że zaczynamy z jednym elektronem, położonym w konkretnym miejscu i czasie (punkt A) oraz tak samo określonym fotonem (w punkcie B). Typowym pytaniem, z fizycznego punktu widzenia, będzie: "Jakie jest prawdopodobieństwo znalezienia elektronu w punkcie C (inne miejsce w późniejszym czasie) a fotonu w D?". Najprostszym procesem do osiągnięcia takiego stanu końcowego jest przesunięcie elektronu z A do C (akcja elementarna) oraz fotonu z B do D (następna akcja elementarna). Znając prawdopodobieństwo każdego z tych podprocesów – E(A → C) oraz P(B → D) – możemy policzyć prawdopodobieństwo zajścia ich obu, poprzez pomnożenie ich przez siebie (używając zasady b), wymienionej wyżej). To da nam prosto otrzymaną odpowiedź na nasze pytanie.

    Prószyński i S-ka to polskie wydawnictwo prasowe i książkowe, działające w latach 1990-2008, oraz nazwa handlowa, pod którą od początku 2009 ukazują się książki wydawane przez wydawnictwo Prószyński Media.Całka – ogólne określenie wielu różnych, choć powiązanych ze sobą pojęć analizy matematycznej. W artykule rachunek różniczkowy i całkowy podana jest historia ewolucji znaczenia samego słowa całka. Najczęściej przez "całkę" rozumie się całkę oznaczoną lub całkę nieoznaczoną (rozróżnia się je zwykle z kontekstu).

    Istnieje jednak wiele możliwości otrzymania takiego rezultatu. Elektron może znaleźć się w punkcie E, gdzie zaabsorbuje foton, potem wyemitować kolejny foton w F, a następnie przemieścić się do C, gdzie zostanie wykryty, podczas gdy nowy foton trafi do D. Prawdopodobieństwo tego złożonego procesu może być ponownie policzone przez przypisanie prawdopodobieństwa poszczególnym akcjom: trzem dla elektronu, dwóm dla fotonu i po jednej dla emisji i absorpcji. Spodziewamy się znaleźć wynikowe prawdopodobieństwo przez pomnożenie przez siebie prawdopodobieństw zdarzeń w E i F dla każdej pozycji. Musimy następnie skorzystać z zasady a), aby dodać do siebie prawdopodobieństwa wszystkich możliwości dla E i F (nie jest to elementarna umiejętność, w praktyce wymaga całkowania). Ale istnieje też inna możliwość - elektron najpierw przemieszcza się do G, gdzie emituje foton, który dociera do D. W tym czasie elektron przemieszcza się do H, gdzie absorbuje pierwszy foton, a następnie trafia do C. Ponownie możemy policzyć prawdopodobieństwo owych możliwości (dla wszystkich możliwych punktów G i H). Dodając prawdopodobieństwa tych dwóch dodatkowych możliwości do otrzymanego na początku prostego wyniku, otrzymujemy lepsze przybliżenie ogólnego prawdopodobieństwa procesu. Nawiasem mówiąc, ów proces oddziaływania elektronu z fotonem nazywa się rozpraszaniem Comptona.

    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Schenectady – miasto w USA, w stanie Nowy Jork, nad rzeką Mohawk, w zespole miejskim Albany-Schenectady-Troy. Około 61,4 tys. mieszkańców (2009).

    Istnieje nieskończona liczba procesów pośredniczących, w których coraz więcej fotonów jest emitowanych i absorbowanych. Dla każdej z tych możliwości istnieje odpowiedni diagram Feynmana, który ją opisuje. Oznacza to złożone obliczenia końcowych prawdopodobieństw, jednak im bardziej złożony przypadek rozważamy, tym mniejsza jest wynikająca z niego poprawka. Jest więc tylko kwestią czasu i zachodu, żeby znaleźć odpowiednio dokładną odpowiedź na początkowe pytanie. Jest to podstawowe podejście elektrodynamiki kwantowej. Aby policzyć prawdopodobieństwo każdego procesu oddziaływań pomiędzy elektronami i fotonami, należy znaleźć wszystkie możliwości, z których proces może być złożony, budując je z trzech podstawowych klocków. Każdy diagram zawiera pewną ilość obliczeń, kierowanych określonym zestawem zasad, aby odnaleźć odpowiadające mu prawdopodobieństwo.

    J. Robert Oppenheimer (ur. 22 kwietnia 1904 w Nowym Jorku, zm. 18 lutego 1967 w Princeton) – amerykański fizyk, profesor na Uniwersytecie Kalifornijskim w Berkeley, dyrektor naukowy Projektu Manhattan – trwającego w czasie II wojny światowej przedsięwzięcia mającego na celu opracowanie pierwszej broni atomowej. Z tego powodu jest nazywany ojcem bomby atomowej.Przesunięcie Lamba – niewielka rozbieżność między obserwowanymi doświadczalnie poziomami energetycznymi atomów wodoru a przewidywaniami równania Diraca, odkryta w 1947-1952 przez Willisa Lamba i jego studenta Roberta C. Retherforda.

    Przedstawiony tu schemat wystarcza do pobieżnego opisu kwantowego, jednak należy w nim dokonać paru zmian konceptualnych. Jedna z nich jest to, że w naszym codziennym świecie istnieją pewne ograniczenia na przemieszczanie się cząstki z miejsca na miejsce, które nie obowiązują w świecie kwantowym. Istnieje możliwość przesunięcia się elektronu w A i fotonu w B do jakiegokolwiek miejsca i czasu we wszechświecie w ramach pojedynczej akcji. Zaliczają się do nich punkty, których nie da się osiągnąć nie przekraczając prędkości światła lub nawet we wcześniejszym czasie (cofający się w czasie elektron może być przedstawiony jako podążający z czasem pozyton).

    W teorii względności pole elektryczne i pole magnetyczne nie są opisywane jako osobne wektory w trójwymiarowej przestrzeni, lecz są składowymi czterowymiarowego antysymetrycznego tensora drugiego rodzaju (czyli po prostu 4x4) zwanego tensorem pola elektromagnetycznego. Tensor ten definiuje się przez pochodne czteropotencjału przy sygnaturze tensora metrycznego w szczególnej teorii względności (+,-,-,-) jako:Los Alamos National Laboratory - laboratorium naukowe położone w pobliżu miasteczka Los Alamos w amerykańskim stanie Nowy Meksyk. Organizacyjnie podlega Departamentowi Energii Stanów Zjednoczonych. W pracach badawczych współpracuje z Uniwersytetem Kalifornijskim. Zatrudnia ponad 9000 pracowników, a jego roczny budżet to około 2,2 mld dolarów. Ośrodek prowadzi badania nad wieloma dziedzinami nauki, między innymi nad wykorzystaniem energii słonecznej i jądrowej do celów pokojowych. Jego rola w badaniach nad bronią nuklearną skupia się głównie na przeprowadzaniu komputerowych symulacji wybuchów jądrowych. Znajduje się tu superkomputer Roadrunner, który w 2008 roku jako pierwszy superkomputer w historii osiągnął wydajność ponad 1 PFLOPS.

    Amplitudy prawdopodobieństwa[]

    Feynman zastąpił liczby zespolone obracającymi się strzałkami, wychodzącymi z miejsca emisji a kończącymi w miejscu detekcji cząstki. Suma wszystkich strzałek reprezentuje prawdopodobieństwo zajścia całego procesu. Na tym diagramie światło wyemitowane przez źródło S odbija się od segmentów lustra (niebieskich), po czym dociera do detektora w P. W obliczeniach należy wziąć pod uwagę wszystkie ścieżki. Graf poniżej pokazuje czas spędzony w każdej ze ścieżek.

    Mechanika kwantowa wprowadza ważną zmianę w sposobie obliczania prawdopodobieństwa. Okazuje się, że wartości, które reprezentują prawdopodobieństwo, nie są zwykłymi liczbami, którymi określamy prawdopodobieństwo w naszym codziennym świecie, lecz liczbami zespolonymi, nazywanymi amplitudami prawdopodobieństwa.

    Macierze γ, macierze Diraca - zbiór czterech macierzy { γ 0 , γ 1 , γ 2 , γ 3 } {displaystyle left{gamma ^{0},gamma ^{1},gamma ^{2},gamma ^{3} ight}} będących bazą przestrzeni macierzy kwadratowych 4x4 nad ciałem liczb zespolonych M 4 × 4 ( C ) {displaystyle M_{4 imes 4}(mathbb {C} )} , stosowanych w relatywistycznej mechanice kwantowej.Steven Weinberg (ur. 3 maja 1933 w Nowym Jorku) – amerykański fizyk teoretyk, laureat Nagrody Nobla. Jest najbardziej znany ze swej teorii unifikującej dwa oddziaływania: słabe i elektromagnetyczne.

    Pragnąc uniknąć wprowadzania czytelnika w skomplikowaną matematykę, Feynman użył prostej, lecz trafnej reprezentacji prawdopodobieństwa w postaci strzałek na papierze lub ekranie (nie należy ich mylić ze strzałkami z diagramów Feynmana, które były dwuwymiarową reprezentacją połączenia przestrzeni 3D oraz czasu). Strzałki amplitudy są podstawą opisu świata w teorii kwantowej. Nie ma satysfakcjonującego wyjaśnienia, dlaczego są one potrzebne. Pragmatycznie jednak zakładamy, że są one podstawową częścią naszego opisu zjawisk kwantowych. Wiążą się one z naszym codziennym pojmowaniem prawdopodobieństwa przez prostą zasadę, że prawdopodobieństwo zdarzenia jest kwadratem długości odpowiadającej mu strzałki. A zatem dla danego procesu, jeśli mamy dwie amplitudy prawdopodobieństwa, v i w, prawdopodobieństwo całego procesu będzie dane przez

    Felix Bloch (ur. 23 października 1905 w Zurychu, zm. 10 września 1983 tamże) – szwajcarsko-amerykański fizyk, przez większość życia mieszkał i pracował w Stanach Zjednoczonych, laureat Nagrody Nobla z fizyki w 1952 za odkrycie nowych metod pomiarów magnetycznej precesji jąder atomowych.Statystyka Fermiego-Diraca – statystyka dotycząca fermionów, cząstek o spinie połówkowym, które obowiązuje zakaz Pauliego. Zgodnie z zakazem Pauliego w danym stanie kwantowym nie może znajdować się więcej niż jeden fermion. Statystyka Fermiego-Diraca oparta jest również na założeniu nierozróżnialności cząstek.

    lub .

    Zasady rządzące dodawaniem lub mnożeniem są takie same, jak opisane wcześniej. Jednak w miejscu, gdzie spodziewalibyśmy się dodawać lub mnożyć prawdopodobieństwo, dodajemy lub mnożymy amplitudy prawdopodobieństwa w postaci liczb zespolonych.

    Spin – moment własny pędu cząstki w układzie, w którym nie wykonuje ruchu postępowego. Własny oznacza tu taki, który nie wynika z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki. Każdy rodzaj cząstek elementarnych ma odpowiedni dla siebie spin. Cząstki będące konglomeratami cząstek elementarnych (np. jądra atomów) mają również swój spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych.Pole elektryczne – stan przestrzeni otaczającej ładunki elektryczne lub zmienne pole magnetyczne. W polu elektrycznym na ładunek elektryczny działa siła elektrostatyczna.
    Dodawanie amplitud prawdopodobieństwa jako liczb zespolonych.
    Mnożenie amplitud prawdopodobieństwa jako liczb zespolonych.

    Dodawanie i mnożenie są znanymi operacjami w teorii liczb zespolonych. Sumę znajduje się następująco: załóżmy, że mamy dwie strzałki, z których druga zaczyna się na końcu pierwszej. Sumą będzie trzecia strzałka, zaczynająca się w punkcie startowym pierwszej, a kończąca na końcu drugiej. Wynikiem dwóch strzałek jest strzałka o długości będącej złożeniem długości dwóch strzałek wejściowych. Kierunek złożenia jest dany sumą kątów, dodanych do względnego kierunku odniesienia.

    W fizyce pole – przestrzenny rozkład pewnej wielkości fizycznej. Inaczej mówiąc – w przestrzeni określone jest pewne pole, jeżeli każdemu punktowi przestrzeni przypisano pewną wielkość.Pole elektromagnetyczne – pole fizyczne, stan przestrzeni, w której na obiekt fizyczny mający ładunek elektryczny działają siły o naturze elektromagnetycznej. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego i pola magnetycznego. Pola te są wzajemnie związane, a postrzeganie ich zależy też od obserwatora, wzajemną relację pól opisują równania Maxwella. Własności pola elektromagnetycznego, jego oddziaływanie z materią bada dział fizyki zwany elektrodynamiką. W mechanice kwantowej pole elektromagnetyczne jest postrzegane jako wirtualne fotony.

    Przejście od prawdopodobieństwa do amplitudy prawdopodobieństwa komplikuje matematykę, jednak nie zmienia podstawowego podejścia. Zmiany wciąż jednak nie są wystarczające, gdyż nie uwzględniają ewentualnej polaryzacji, czyli orientacji w przestrzeni, elektronu i fotonu. Tak więc P(A → B) zawierać będzie 16 liczb zespolonych lub strzałek amplitudy prawdopodobieństwa. Potrzebne są również pewne niewielkie zmiany w traktowaniu wielkości j, która może ulegać obrotowy przez pomnożenie przez 90° dla niektórych polaryzacji.

    Physical Review (często używany skrót: Phys. Rev.) – czasopismo naukowe publikujące prace naukowe ze wszystkich gałęzi fizyki. Wydawane przez Amerykańskie Towarzystwo Fizyczne (American Physical Society, APS). Założony w roku 1893 Physical Review jest najstarszym wciąż wydawanym i jednym z najbardziej prestiżowych czasopism poświęconych fizyce.Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.

    Fakt, że elektron może być spolaryzowany jest kolejnym potrzebnym szczegółem, wynikającym z tego, że jest on fermionem i podlega statystyce Fermiego-Diraca. Podstawowa zasada jest taka, że jeśli mamy amplitudę prawdopodobieństwa dla danego złożonego procesu wykorzystującego więcej niż jeden elektron, wtedy dołączamy (jak zawsze to robimy) uzupełniający diagram Feynmana, zawierający wymianę dwóch zdarzeń z elektronem, którego rezultatem jest odwrócenie amplitudy pierwszego zdarzenia. Najprostszym przypadkiem będzie rozważenie dwóch elektronów startujących z A i B i wychwytywanych w C i D. Amplituda będzie liczona jako "różnica", E(A → D) × E(B → C) − E(A → C) × E(B → D), chociaż z naszego codziennego doświadczenia wynika, że powinna ona być sumą.

    Lagranżjan (L, inaczej funkcja Lagrange’a) – gęstość funkcjonału działania S charakteryzującego właściwości mechaniczne układu fizycznego.Równanie Kleina-Gordona – relatywistyczna wersja (opisująca skalarne (lub pseudoskalarne) cząstki o zerowym spinie) równania Schrödingera.

    Propagatory[]

    Na koniec mamy policzyć prawdopodobieństwa P(A → B) i E(C → D) odpowiednio dla fotonu i elektronu. Są to dokładnie rozwiązania równania Diraca, opisujące amplitudę prawdopodobieństwa elektronu oraz równania Kleina-Gordona, opisującą podobną amplitudę dla fotonu. Są to tak zwane propagatory Feynmana. Tłumaczenie do notacji używanej zwykle w literaturze jest następujące:

    Poziom energetyczny - energia stanu dostępnego dla cząstki. Poziom może być zdegenerowany, jeśli dana wartość energii cechuje więcej niż jeden stan kwantowy.Stan kwantowy — informacja o układzie kwantowym pozwalająca przewidzieć prawdopodobieństwa wyników wszystkich pomiarów, jakie można na tym układzie wykonać. Stan kwantowy jest jednym z podstawowych pojęć mechaniki kwantowej.

    gdzie symbol stenograficzny, jak np. , oznacza cztery liczby rzeczywiste, określające czas i trzy współrzędne przestrzenne punktu A.

    Ładunek elektryczny ciała (lub układu ciał) – fundamentalna właściwość materii przejawiająca się w oddziaływaniu elektromagnetycznym ciał obdarzonych tym ładunkiem. Ciała obdarzone ładunkiem mają zdolność wytwarzania pola elektromagnetycznego oraz oddziaływania z tym polem. Oddziaływanie ładunku z polem elektromagnetycznym jest określone przez siłę Lorentza i jest jednym z oddziaływań podstawowych.Oscylator harmoniczny – układ drgający, poddany działaniu sił sprężystych tj. sił proporcjonalnych do przemieszczenia r {displaystyle r} układu od położenia równowagi:

    Renormalizacja masy[]

    Pętla energii własnej elektronu

    Problem z masą utrzymywał się przez dwadzieścia lat. Chociaż wychodzimy z założenia o trzech podstawowych "prostych" akcjach, zasady wymagają, że gdy chcemy policzyć amplitudę prawdopodobieństwa przejścia elektronu z punktu A do punktu B, musimy wziąć pod uwagę wszystkie możliwe drogi: każdy możliwy diagram Feynmana spełniający nasze warunki końcowe. Tak więc uwzględniamy sytuację, w której elektron wędruje do C, emituje foton, po czym absorbuje go w D, przed dojściem do B. Następnie powielamy ten proces dwukrotnie i więcej razy. W skrócie, mamy tutaj obraz podobny do fraktala, w której, gdy spojrzymy z bliska na linię, okaże się, że składa się ona ze zbioru mniejszych akcji, i tak w nieskończoność. To bardzo trudna do ogarnięcia sytuacja. Jeśli dodawanie tylko trochę zmienionych szczegółów nie jest jeszcze zbyt złe, to powstaje katastrofa, kiedy takie drobne poprawki prowadzą do nieskończonych amplitud prawdopodobieństwa. Z czasem problem ten został "rozwiązany" przez renormalizację (patrz niżej oraz artykuł o renormalizacji). Niemniej sam Feynman pozostał tym nieusatysfakcjonowany, nazywając to "odjechaną procedurą".

    Oddziaływania podstawowe (fundamentalne) – oddziaływania fizyczne obserwowane w przyrodzie, nie dające się sprowadzić do innych oddziaływań.Victor Frederick Weisskopf (ur. 19 września 1908 w Wiedniu – zm. 22 kwietnia 2002 w Newton, Massachusetts) – fizyk austriacko-amerykański.

    Konkluzje[]

    W ramach powyższej konstrukcji fizycznej jesteśmy w stanie z dużą dokładnością policzyć pewne własności elektronów, między innymi magnetyczny moment dipolowy. Aczkolwiek, co wskazał Feynman, zupełnie nie wyjaśnia, dlaczego cząstki, takie jak elektron, mają taką masę a nie inną. "nie jest to teoria, która w adekwatny sposób wyjaśnia owe liczby. Używamy ich we wszystkich naszych teoriach, ale ich nie rozumiemy - czym one są, albo skąd się wzięły. Wierzę, że z fundamentalnego punktu widzenia, jest to bardzo interesujący i poważny problem.".

    Funkcjonał – w matematyce to przekształcenie z przestrzeni wektorowej w ciało skalarne, nad którym rozpięta jest ta przestrzeń. Jest to funkcja, której argumentami są wektory, a wartościami skalary. Często tą przestrzenią jest przestrzeń funkcji - wtedy argumentem funkcjonału jest funkcja. Dlatego czasem uważany jest za funkcję funkcji.Stała struktury subtelnej (oznaczenie: α) – podstawowa stała fizyczna charakteryzująca siłę oddziaływań elektromagnetycznych. Została formalnie wprowadzona przez Arnolda Sommerfelda. Jest wielkością bezwymiarową więc jej wartość nie zależy od przyjętego systemu jednostek.

    Opis matematyczny[]

    Matematycznie, elektrodynamika kwantowa jest abelową teorią cechowania z grupą symetrii U(1). Polem cechowania jest pole elektromagnetyczne. Lagranżjan teorii dla pola spinu ½ oddziałującego z polem elektromagnetycznym jest dany częścią rzeczywistą z formuły

    gdzie

    Fraktal (łac. fractus – złamany, cząstkowy, ułamkowy) w znaczeniu potocznym oznacza zwykle obiekt samo-podobny (tzn. taki, którego części są podobne do całości) albo "nieskończenie subtelny" (ukazujący subtelne detale nawet w wielokrotnym powiększeniu). Ze względu na olbrzymią różnorodność przykładów matematycy obecnie unikają podawania ścisłej definicji i proponują określać fraktal jako zbiór, który:Hans Albrecht Bethe (ur. 2 lipca 1906 w Strasburgu, zm. 6 marca 2005 w Ithace) – fizyk amerykański pochodzenia niemieckiego.
    macierzami Diraca; jest bispinorem pola cząstek o spinie połówkowym (np. pole elektronpozyton); , nazywane "psi z kreską", odnoszone czasem do sprzężenia Diraca; jest kowariantną pochodną cechowania; e jest stałą struktury subtelnej, równą ładunkowi elektrycznemu pola bispinorowego; Aμ to kowariantny czteropotencjał pola elektromagnetycznego, generowanego przez elektron; Bμ jest polem zewnętrznym przyłożonym przez zewnętrzne źródło; jest tensorem pola elektromagnetycznego.

    Elektrodynamika opisuje zachowanie cząstek naładowanych elektrycznie, tłumacząc ich oddziaływania wymianą kwantów pola elektromagnetycznego, czyli fotonów. Podstawowymi elementami teorii są pole elektromagnetyczne reprezentowane przez antysymetryczny tensor pola elektromagnetycznego F oraz pola materii reprezentowane przez funkcje falowe.

    Kwant – najmniejsza porcja, jaką może mieć lub o jaką może zmienić się dana wielkość fizyczna w pojedynczym zdarzeniu; np. kwant energii, kwant momentu pędu, kwant strumienia magnetycznego, kwant czasu.Nowy Jork (ang. City of New York, również New York, New York City) – najludniejsze miasto w Stanach Zjednoczonych, a zarazem centrum jednej z najludniejszych aglomeracji na świecie. Nowy Jork wywiera znaczący wpływ na światowy biznes, finanse, media, sztukę, modę, badania naukowe, technologię, edukację oraz rozrywkę. Będąc między innymi siedzibą Organizacji Narodów Zjednoczonych, stanowi ważne centrum spraw międzynarodowych i jest powszechnie uważany za kulturalną stolicę świata.

    Funkcjonał działania teorii ma postać:

    gdzie funkcja Lagrange'a opisuje pole elektromagnetyczne i pole elektronów

    z

    Jądrowa stała sprzężenia spinowo-spinowego (J) − pojęcie stosowane w spektroskopii Magnetycznego Rezonansu Jądrowego (NMR), opisuje oddziaływanie momentów magnetycznych jąder pomiędzy sobą. Konsekwencją tego oddziaływania jest pojawienie się w widmie NMR, zamiast jednego sygnału pochodzącego od danego jądra, tzw. multipletu, czyli kilku sygnałów, których odległość od siebie zależy od wielkości stałej sprzężenia spinowo-spinowego (w najprostszym przypadku jest jej równa). Najczęściej używaną jednostką stałej sprzężenia jest herc.Enrico Fermi (ur. 29 września 1901 w Rzymie, Włochy, zm. 28 listopada 1954 w Chicago, USA) – włoski fizyk teoretyk, laureat Nagrody Nobla z dziedziny fizyki w roku 1938, za wytworzenie w reakcjach z neutronami nowych pierwiastków promieniotwórczych.

    D jest pochodną kowariantną

    Zjawisko Comptona, rozpraszanie komptonowskie – zjawisko rozpraszania promieniowania X (rentgenowskiego) i promieniowania gamma, czyli promieniowania elektromagnetycznego o dużej częstotliwości, na swobodnych lub słabo związanych elektronach, w wyniku którego następuje zwiększenie długości fali promieniowania. Za słabo związany uważamy przy tym elektron, którego energia wiązania w atomie, cząsteczce lub sieci krystalicznej jest znacznie niższa, niż energia padającego fotonu. Zjawisko przebiega w tym przypadku praktycznie tak samo, jak dla elektronu swobodnego.Freeman John Dyson (ur. 15 grudnia 1923 w Cowthorne, Anglia) – amerykański fizyk teoretyk, z pochodzenia Anglik, matematyk, futurolog, astrofizyk, autor projektu sfery Dysona.

    Aμ={A0=φ/c,-A } jest polem cechowania elektrodynamiki zbudowanym z potencjału skalarnego i φ i wektorowego tak jak w elektrodynamice klasycznej.

    Magnetyczny moment dipolowy μ → {displaystyle {vec {mu }}} (lub p m {displaystyle {mathbf {p} }_{ extrm {m}}} ) – pseudowektorowa wielkość fizyczna cechująca dipol magnetyczny, która określa wartość i kierunek ustawienia dipola magnetycznego w przestrzeni; wielkość ta pozwala np. opisać oddziaływanie dipola z zewnętrznym polem magnetycznym. W przypadku np. magnesu sztabkowego wektor μ → {displaystyle {vec {mu }}} ma zwrot od bieguna S do N tego magnesu. Sens fizyczny takiego wyboru zwrotu momentu magnetycznego objaśniono w rozdziale #Dipol magnetyczny w polu magnetycznym.Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.

    Równanie ruchu[]

    Na początek, wstawiając definicję D do Lagranżjanu, otrzymujemy

    Następnie, możemy wstawić ten lagranżjan do równania Eulera-Lagrange'a ruchu dla pola:

    DOI (ang. digital object identifier – cyfrowy identyfikator dokumentu elektronicznego) – identyfikator dokumentu elektronicznego, który w odróżnieniu od identyfikatorów URL nie zależy od fizycznej lokalizacji dokumentu, lecz jest do niego na stałe przypisany.W matematyce, grupa kołowa, oznaczana jako T, to grupa multiplikatywna wszystkich liczb zespolonych o wartości bezwzględnej 1, np. okrąg jednostkowy na płaszczyźnie zespolonej:

    aby znaleźć równanie pola dla elektrodynamiki kwantowej.

    Wolfgang Pauli (ur. 25 kwietnia 1900 w Wiedniu, zm. 15 grudnia 1958 w Zurychu) – szwajcarski fizyk austriackiego pochodzenia, od 1928 profesor w Związkowej Wyższej Szkole Technicznej w Zurychu, po 1939 pracujący na Uniwersytecie Princeton w USA, jeden z twórców mechaniki kwantowej.Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu.

    Będziemy mieć wówczas dwa wyrażenia dla lagranżjanu:

    Wstawiając je z powrotem do równania Eulera-Lagrange'a otrzymujemy

    Paul Adrien Maurice Dirac (ur. 8 sierpnia 1902 w Bristolu, zm. 20 października 1984 w Tallahassee) – angielski fizyk teoretyk.W mechanice kwantowej, teoria perturbacji jest zbiorem schematów przybliżeń bezpośrednio związanych z matematyczną perturbacją dla opisania złożonego systemu kwantowego za pomocą prostszych systemów.

    co jest sprzężeniem zespolonym do

    Pozyton, antyelektron (nazywany też pozytronem wskutek kalkowania ang. nazwy positron) – elementarna cząstka antymaterii oznaczana symbolem e, będąca antycząstką elektronu. Należy do grupy leptonów.Grupa przemienna (abelowa) – grupa, w której działanie jest przemienne. Zwyczajowo, w przypadku grup przemiennych stosuje się zapis addytywny.

    Wzięcie środkowego wyrażenia na prawą stronę przekształca to drugie równanie w

    Elektrodynamika klasyczna – dział fizyki zajmujący się własnościami i oddziaływaniem obiektów naładowanych, z pominięciem efektów kwantowych. Elektrodynamika klasyczna opisuje aspekty klasyczne jednego z czterech podstawowych oddziaływań przyrody – oddziaływań elektromagnetycznych. Podstawowymi pojęciami elektrodynamiki klasycznej są pole elektryczne, pole magnetyczne, ładunek elektryczny, oraz prąd elektryczny. Podstawę teorii tworzą równania Maxwella (James Clerk Maxwell) i zasada zachowania ładunku. Z tych praw można wyprowadzić równanie falowe, prawo Biota-Savarta i inne. Symetria równań Maxwella opisana przez transformacje Lorentza oraz nieudane próby (eksperyment Michelsona-Morleya) potwierdzenia istnienia eteru (klasycznego nośnika fali elektromagnetycznej) doprowadziły do zmiany koncepcji czasu i przestrzeni w szczególnej teorii względności i wyłonienie się koncepcji czasoprzestrzeni Minkowskiego. Niemożność wytłumaczenia przez elektrodynamikę klasyczną promieniowania ciała doskonale czarnego oraz zjawiska fotoelektrycznego doprowadziła do powstania mechaniki kwantowej.Definicja intuicyjna: Tensor – uogólnienie pojęcia wektora; wielkość, której własności pozostają identyczne niezależnie od wybranego układu współrzędnych.

    Lewa strona jest jak oryginalne równanie Diraca, zaś prawa strona opisuje oddziaływanie z polem elektromagnetycznym.

    Eugene Paul Wigner, pierwotna, węgierska wersja jego imion to Jenő Pál (ur. 17 listopada 1902 w Budapeszcie, zm. 1 stycznia 1995 w Princeton) – węgierski fizyk i matematyk, laureat nagrody Nobla w dziedzinie fizyki.Oddziaływanie elektromagnetyczne to jedno z czterech znanych fizyce oddziaływań elementarnych. Odpowiada za siły działające między cząstkami posiadającymi ładunek elektryczny. Jego odkrywcą był Duńczyk Hans Christian Ørsted.

    Inne ważne równanie można otrzymać ponownie wstawiając lagranżjan do równania Eulera-Lagrange'a, tym razem dla pola, A:

    Dwa wyrażenia tym razem przybiorą postać

    Równanie Diraca – podstawowe równanie w relatywistycznej mechanice kwantowej, sformułowane przez angielskiego fizyka Paula Diraca w 1928 roku. Spełnia ono taką samą rolę jak równanie Schrödingera w nierelatywistycznej mechanice kwantowej.Bibcode – identyfikator używany w wielu astronomicznych systemach danych do oznaczania publikacji wymienianych w bibliografii.

    Te dwa równania, wstawione do wcześniejszego równania, dadzą nam

    Teraz, jeżeli nałożymy warunek cechowania Lorentza, tak, że dywergencja czteropotencjału zaniknie

    to otrzymamy

    co jest równaniem falowym dla czteropotencjału, wersją QED klasycznego elektromagnetyzmu Maxwella z cechowaniem Lorentza.

    Diagramy Feynmana[]

    Rozwinięcie powyższego funkcjonału w formalny szereg (matematyka) względem potęg stałej sprzężenia e prowadzi do wyrażeń całkowych opisujących prawdopodobieństwo przejść pomiędzy rozmaitymi stanami kwantowymi pola. Poszczególne wyrażenia w tym szeregu mają postać całek wielokrotnych i mogą zostać zaprezentowane graficznie za pomocą symboliki diagramów Feynmana.

    Poniżej opisano podstawowe procesy opisywane diagramami Feynmana o ile przyjmiemy przedstawienie teorii w reprezentacji przestrzeni położeń i czasu (a nie np. przestrzeni pędów). Należy przy tym być świadomym, że poniższe rysunki nie reprezentują żadnego z rzeczywistych procesów fizycznych i nie przedstawiają same w sobie żadnej treści fizycznej, mimo że używa się podczas ich opisu zwrotów typu zderzenie czy rozpraszanie. Każde z poniżej wypisanych wyrażeń ma następujący sens: pojedynczy diagram jest wkładem od pewnego formalnego wyrażenia matematycznego reprezentującego element operatorowy macierzy rozpraszania. Obiekt ten działając na funkcje falowe z odpowiedniej przestrzeni Hilberta stanów pola elektromagnetycznego, pozwala na zmianę tej funkcji podobnie jak inne operatory w mechanice kwantowej.

    W szczególności obliczając kwadrat modułu takiego stanu otrzymujemy informacje o liczbowej wartości prawdopodobieństwa opisującym pewien proces fizyczny – prawdopodobieństwo zmiany pewnego stanu fizycznego do innego. Każdy z elementów tej macierzy jest sumą nieskończenie wielu diagramów Feynmana, z tym, ze wykonując obliczenia ze skończoną dokładnością zwykle szereg ów urywamy np. na trzeciej potędze stałej sprzężenia pól elektromagnetycznych.

    Warto pamiętać, że sens fizyczny ma dopiero szereg złożony z nieskończenie wielu diagramów Feynmana, co więcej dopiero po wykonaniu procedury renormalizacji, gdyż bez niej nawet poszczególne wyrażenia tego szeregu są niepoprawnie określone w sensie matematycznym (są rozbieżne). Występują procesy, w których elektron, pozyton i foton powstają z niczego, a następnie spotykają się ze sobą. Ich uwzględnienie zmienia nieskończoność typu na "mniejszą" typu i umożliwia renormalizację.

    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama