• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Działanie algebraiczne



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Perl – interpretowany język programowania autorstwa Larry’ego Walla początkowo przeznaczony głównie do pracy z danymi tekstowymi, obecnie używany do wielu innych zastosowań. Wzorowany na takich językach jak C, skryptowe: sed, awk i sh oraz na wielu innych.

    Działanie lub operacja – przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.

    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Funktor zdaniotwórczy – wyrażenie, które wraz z innymi wyrażeniami, nazywanymi argumentami funktora, tworzy zdanie lub funkcję zdaniową.

    Najczęściej mówi się o działaniach jedno- i dwuargumentowych, choć mogą one mieć ich więcej lub mniej (zero, mówi się wtedy o działaniach zeroargumentowych wskazujących elementy wyróżnione). Działania jednoargumentowe (unarne) dają wynik na podstawie tylko jednej wartości, czego przykładem są np. negacja, czy funkcje trygonometryczne. Często argumentami i wynikami działań są wartości liczbowe. Działania dwuargumentowe (binarne) na liczbach przyjmują dwie wartości dając trzecią, wśród przykładów można wymienić dodawanie, odejmowanie, mnożenie, dzielenie, czy potęgowanie.

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Splot, splot całkowy, mnożenie splotowe lub konwolucja (ang. convolution: od convolute, „skręcać, zwijać”; z łac. convolutus, im. od convolvere, od com-, „z, razem; całkowicie, gruntownie, dokładnie” i volvere, „zawijać”) – w matematyce oraz technice, działanie określone dla dwóch funkcji (lub opisywanych przez nie sygnałów) dające w wyniku inną, która może być postrzegana jako zmodyfikowana wersja oryginalnych funkcji. Nazwą tą nazywa się również wynik tego działania, które bywa nazywane także iloczynem (lub produktem) splotowym. Splot podobny jest do korelacji wzajemnej. Znajduje zastosowania także m.in. w statystyce, równaniach różniczkowych, elektrotechnice, cyfrowym przetwarzaniu obrazów czy sygnałów – na przykład, w przetwarzaniu obrazów operacja splotu obrazu źródłowego z odpowiednio skonstruowanym filtrem pozwala na wykrycie krawędzi (np. filtr Sobela), rozmycie obrazu (np. filtr Gaussa) oraz pozwala na ekstrakcję cech kształtów przy rozpoznawaniu wzorców obiektów w obrazie (falki Gabora), jak i wielu innych.

    Działania nie muszą dotyczyć tylko liczb, a dowolnych obiektów matematycznych, np. wektor może być pomnożony przez skalar, aby dać inny wektor; działanie iloczynu skalarnego dwóch wektorów daje skalar. Działania logiczne takie jak koniunkcja („i”), alternatywa („lub”), czy negacja („nie”) łączą ze sobą wartości logiczne prawdy i fałszu. Dodaje się i odejmuje wektory. Za pomocą działania składania funkcji łączy się ze sobą obroty, jeden po drugim. Działania na zbiorach obejmują działania dwuargumentowe sumy i iloczynu zbiorów oraz jednoargumentowe dopełnienie. Wśród działań na funkcjach można wymienić złożenie, czy splot.

    Język rosyjski (ros. русский язык, russkij jazyk; dawniej też: język wielkoruski) – język należący do grupy języków wschodniosłowiańskich, posługuje się nim jako pierwszym językiem około 145 mln ludzi, ogółem (według różnych źródeł) 250-300 mln. Jest językiem urzędowym w Rosji, Kirgistanie i na Białorusi, natomiast w Kazachstanie jest językiem oficjalnym oraz jest jednym z pięciu języków oficjalnych a jednocześnie jednym z sześciu języków konferencyjnych Organizacji Narodów Zjednoczonych. Posługuje się pismem zwanym grażdanką, graficzną odmianą cyrylicy powstałą na skutek jej upraszczania.Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą, ani liczbą złożoną.

    Ponadto działania mogą przejawiać, lub nie, określone własności, np. łączność, alternatywność, przemienność, antyprzemienność, idempotentność itp.

    Działanie jest podobne do operatora; różni je punkt widzenia: często mówi się o „działaniu dodawania”, gdy chce się położyć nacisk na argumenty i wynik, lecz mówiąc „operator dodawania” bardziej skupia się na samym procesie lub, z bardziej abstrakcyjnego punktu widzenia, na funkcji

    R {displaystyle R} jest pierścieniem z dzieleniem (algebrą łączną z dzieleniem) wtedy i tylko wtedy, gdy R ∗ = R ∖ { 0 } {displaystyle R^{*}=Rsetminus {0}} ; w przeciwnym razie zbiór R ∗ {displaystyle R^{*}} jest mniejszy, np. Z ∗ = { 1 , − 1 } {displaystyle mathbb {Z} ^{*}={1,-1}} ;Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.
    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).
    Algebra nad ciałem a. algebra liniowa – w algebrze liniowej przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Kareta (ang. caret) – nazwa symbolu ^ (czasami nazywanego daszkiem lub dzióbkiem). W Standardzie Unicode ma kod U+005E, a w ASCII ma szesnastkowy kod 5E.
    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    Reklama

    Czas generowania strony: 0.083 sek.