• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Dyskretny rozkład prawdopodobieństwa

    Przeczytaj także...
    Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.Zbiór gęsty – zbiór, którego domknięcie jest całą przestrzenią. Równoważnie, zbiór jest gęsty, jeżeli ma z każdym niepustym zbiorem otwartym co najmniej jeden punkt wspólny. W przestrzeni metrycznej ( X , d ) {displaystyle (X,d)} zbiór D ⊂ X {displaystyle Dsubset X} nazywamy gęstym jeśli dla każdego x ∈ X {displaystyle xin X} i liczby ε > 0 {displaystyle varepsilon >0} istnieje element q ∈ D {displaystyle qin D} taki, że d ( x , q ) < ε {displaystyle d(x,q)<varepsilon } , tzn. dowolnie blisko każdego elementu x ∈ X {displaystyle xin X} znajduje się jakiś element z D {displaystyle D} .
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Funkcja opisująca przykładowy dyskretny rozkład prawdopodobieństwa. Prawdopodobieństwa przyjęcia przez zmienną wartości 1, 3 i 7 wynoszą odpowiednio 0.2, 0.5, 0.3. Inne wartości mają zerowe prawdopodobieństwo.
    Od góry: dystrybuanta pewnego dyskretnego rozkładu, rozkładu ciagłego, oraz rozkładu mającego zarówno ciągłą, jak i dyskretną część.

    Dyskretny rozkład prawdopodobieństwarozkład prawdopodobieństwa zmiennej losowej dający się opisać przez podanie wszystkich przyjmowanych przez nią wartości, wraz z prawdopodobieństwem przyjęcia każdej z nich. Funkcja przypisująca prawdopodobieństwo do konkretnej wartości zmiennej losowej jest nazywana funkcją rozkładu prawdopodobieństwa (probability mass function, pmf). Zachodzi:

    Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.

    gdzie przebiega zbiór możliwych wartości zmiennej

    Rozkład dwupunktowy – rozkład dyskretny prawdopodobieństwa w którym zmienna losowa przyjmuje tylko dwie różne wartości. Jest on na przykład rezultatem doświadczenia (zwanego próbą Bernoulliego), w wyniku którego określone zdarzenie A wystąpi lub nie wystąpi.Rozkład dwumianowy (w Polsce zwany też rozkładem Bernoulliego, choć w krajach anglojęzycznych termin Bernoulli distribution odnosi się do rozkładu zero-jedynkowego) to dyskretny rozkład prawdopodobieństwa opisujący liczbę sukcesów k w ciągu N niezależnych prób, z których każda ma stałe prawdopodobieństwo sukcesu równe p. Pojedynczy eksperyment nosi nazwę próby Bernoulliego.

    Jeśli zmienna losowa jest dyskretna, wówczas zbiór wszystkich wartości, które przyjmuje z niezerowym prawdopodobieństwem jest skończony lub przeliczalny, gdyż suma nieprzeliczalnie wielu dodatnich liczb rzeczywistych jest zawsze nieskończona.

    Zwykle ten zbiór przyjmowanych wartości jest topologicznie zbiorem izolowanych punktów. Istnieją jednak zmienne dyskretne, dla których zbiór przyjmowanych wartości jest gęsty.

    Równoważnie dyskretną zmienną losową można zdefiniować jako zmienną losową, której dystrybuanta jest funkcją schodkową:

    Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:Funkcja schodkowa – funkcja, która jest stała na określonych przedziałach. Intuicyjnie, jest to funkcja, której wykres przypomina schodki. Najbardziej znane funkcje schodkowe:

    Rozkład Poissona, rozkład dwumianowy, rozkład dwupunktowy, rozkład geometryczny są najbardziej znanymi rozkładami dyskretnymi.

    Dystrybuanta (fr. distribuer „rozdzielać, rozdawać”) – w rachunku prawdopodobieństwa, statystyce i dziedzinach pokrewnych, funkcja rzeczywista jednoznacznie wyznaczająca rozkład prawdopodobieństwa (tj. miarę probabilistyczną określoną na σ-ciele borelowskich podzbiorów prostej), a więc zawierająca wszystkie informacje o tym rozkładzie. Dystrybuanty są efektywnym narzędziem badania prawdopodobieństwa, ponieważ są obiektami prostszymi niż rozkłady prawdopodobieństwa. W statystyce dystrybuanta rozkładu próby zwana jest dystrybuantą empiryczną i jest blisko związana z pojęciem rangi.Rozkład geometryczny jest dyskretnym rozkładem prawdopodobieństwa opisującym prawdopodobieństwo zdarzenia, że proces Bernoulliego odniesie pierwszy sukces dokładnie w k-tej próbie. k musi być liczbą naturalną dodatnią. Rozkład ten oznacza się zwykle symbolem Geo(p).

    Zobacz też[]

  • ciągły rozkład prawdopodobieństwa
  • wektor losowy



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Ciągły rozkład prawdopodobieństwa - rozkład prawdopodobieństwa dla którego dystrybuanta jest funkcją ciągłą. Stosowana jest też węższa definicja, przedstawiona poniżej w sekcji bezwzględna ciągłość.

    Reklama

    Czas generowania strony: 0.017 sek.