• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Dysk rozproszony



    Podstrony: [1] [2] 3 [4]
    Przeczytaj także...
    Metan (znany także jako gaz błotny i gaz kopalniany), CH4 – organiczny związek chemiczny, najprostszy węglowodór nasycony (alkan). W temperaturze pokojowej jest bezwonnym i bezbarwnym gazem. Jest stosowany jako gaz opałowy i surowiec do syntezy wielu innych związków organicznych.Kometa – małe ciało niebieskie poruszające się w układzie planetarnym, które na krótko pojawia się w pobliżu gwiazdy centralnej. Ciepło tej gwiazdy powoduje, że wokół komety powstaje koma, czyli gazowa otoczka. W przestrzeń kosmiczną jądro komety wyrzuca materię, tworzącą dwa warkocze kometarne – gazowy i pyłowy, skierowane pod różnymi kątami do kierunku ruchu komety. Gazowy warkocz komety jest zawsze zwrócony w kierunku przeciwnym do gwiazdy, co spowodowane jest oddziaływaniem wiatru słonecznego, który zawsze jest skierowany od gwiazdy. Pyłowy warkocz składa się z drobin zbyt masywnych, by wiatr słoneczny mógł znacząco zmienić kierunek ich ruchu.
    Skład[]
    Widma w podczerwieni Plutona oraz Eris. Strzałkami zaznaczono linie absorpcyjne metanu, występujące w obu widmach

    Obiekty rozproszone, podobnie jak inne obiekty transneptunowe, mają małe gęstości i składają się głównie z zamrożonych prostych związków, takich jak woda i metan. Analiza widma różnych obiektów rozproszonych i obiektów Pasa Kuipera pokazała, że ich skład jest podobny. Przykładowo widma zarówno Plutona jak i Eris zawierają linie absorpcyjne metanu.

    Jednostka astronomiczna, oznaczenie au (dawniej również AU, w języku polskim czasem stosowany jest skrót j.a.) – pozaukładowa jednostka odległości używana w astronomii równa dokładnie 149 597 870 700 m. Dystans ten odpowiada w przybliżeniu średniej odległości Ziemi od Słońca. Definicja i oznaczenie zostały przyjęte podczas posiedzenia Międzynarodowej Unii Astronomicznej w Pekinie w 2012 roku.Ekliptyka – (z gr. έκλειψις zaćmienie) wielkie koło na sferze niebieskiej, po którym w ciągu roku pozornie porusza się Słońce obserwowane z Ziemi.

    Początkowo astronomowie podejrzewali, że wszystkie obiekty transneptunowe będą miały podobny, czerwonawy kolor powierzchni, ponieważ ich pochodzenie jest podobne i przeszły przez podobne fizyczne przemiany. W szczególności oczekiwano, że wszystkie będą miały na powierzchni związki organiczne powstałe z metanu pod wpływem promieniowania Słońca. Związki takie pochłaniają niebieskie światło, pozostawiając czerwonawy odcień. Większość obiektów Pasa Kuipera ma taki odcień, ale obiekty dysku rozproszonego go zwykle nie posiadają. Ich powierzchnia jest biała lub szara.

    Twotino – typ obiektu transneptunowego z pasa Kuipera. Cechą charakterystyczną tych planetoid jest to, iż występuje u nich rezonans orbitalny 2:1 z Neptunem: na jeden obieg twotino wokół Słońca przypadają dwa obiegi Neptuna.Obiekty odłączone – planetoidy krążące w zewnętrznych rejonach Układu Słonecznego, które nigdy nie zbliżają się do Słońca na tyle, aby wpływ grawitacyjny planet (w szczególności Neptuna) mógł zaburzyć ich orbitę. Z tego powodu uważa się je za „odłączone” od reszty Układu Słonecznego.

    Jednym z możliwych powodów jest pojawianie się na ich powierzchni materiału z głębszych warstw, wyrzuconego w trakcie zderzeń z innymi obiektami. Innym, że większa odległość od Słońca umożliwia powstanie gradientu składu, podobnie jak w większych planetach. Michael Brown zasugerował, że jasny odcień Eris może być spowodowany tym, że przy jej obecnej odległości od Słońca metan na jej powierzchni zamarza, tworząc białą warstwę. Pluton, ponieważ krąży bliżej Słońca, jest wystarczająco ciepły, żeby metan zamarzał jedynie na jego biegunach pozostawiając resztę powierzchni odkrytą.

    Migracja planetarna — zjawisko zmian orbity planety we wczesnych etapach formowania się układu planetarnego wokół gwiazdy. Jest ono wynikiem złożonych oddziaływań planety z innymi planetami, planetozymalami i gazem w dysku protoplanetarnym.Obłok Oorta (znany też pod nazwą obłoku Öpika-Oorta) – hipotetyczny, sferyczny obłok, składający się z pyłu, drobnych okruchów i planetoid obiegających Słońce w odległości od 300 do 100 000 j.a.. Składa się głównie z lodu i zestalonych gazów takich jak amoniak czy metan. Rozciąga się do około jednej czwartej odległości do Proxima Centauri i około tysiąckrotnie dalej niż pas Kuipera i dysk rozproszony, gdzie krążą znane obiekty transneptunowe. Zewnętrzne granice obłoku Oorta wyznaczają granicę dominacji grawitacyjnej Układu Słonecznego

    Komety[]

     Osobny artykuł: Kometa.
    Jowiszowa kometa Tempel 1

    Pas Kuipera był pierwotnie uważany za główne źródło komet orbitujących w płaszczyźnie ekliptyki. Jednak jego badania prowadzone od 1992 roku pokazały, że orbity krążących w nim ciał są dosyć stabilne i że te komety pochodzą raczej z bardziej dynamicznego dysku rozproszonego.

    (29981) 1999 TD10 – planetoida z grupy centaurów, obiegająca Słońce po orbicie o mimośrodzie 0,87 w czasie niemal 1000 lat. Została odkryta 3 października 1999 roku w programie Spacewatch. Nazwa planetoidy jest oznaczeniem tymczasowym.Obiekty pozostające w rezonansie orbitalnym z Neptunem – ciała niebieskie najczęściej z pasa Kuipera (obiekty transneptunowe) o stosunkowo niewielkich rozmiarach (poniżej 3000 km), które obiegają Słońce w specyficznej zależności grawitacyjnej z Neptunem.

    Komety można z grubsza podzielić na dwie kategorie: krótko- i długookresowe. Za źródło komet długookresowych uważa się Obłok Oorta. Komety krótkookresowe dzieli się na kolejne dwie kategorie: komety rodziny Jowisza i rodziny Neptuna. Drugą grupę, której przykładem jest kometa Halleya, tworzą obiekty pochodzące z Obłoku Oorta, które zostały wysłane do wewnętrznych rejonów Układu przez grawitację Neptuna. Za źródło komet z pierwszej grupy uważa się dysk rozproszony. Centaury, obiekty krążące pomiędzy orbitami Jowisza i Neptuna, uważa się za przejściowe stadium między obiektami dysku rozproszonego i kometami jowiszowymi.

    Kometa Halleya (nazwa oficjalna 1P/Halley, łac. Cometa Halleiensis) – najbardziej znana kometa krótkookresowa. Nazwa pochodzi od nazwiska astronoma Edmunda Halleya, który na początku XVIII wieku badał zapiski o pojawianiu się komet z lat 1456 - 1682 i w 1705 roku przewidział ponowne pojawienie się tej komety w 1758 roku. Halley odnalazł łącznie 24 komety okresowe. W pobliżu Słońca kometa Halleya traci podczas każdego przelotu około 250 mln ton swojej materii, na podstawie czego szacuje się, że będzie istnieć przez kolejne 170 000 lat.Teleskop (gr. tēle-skópos – daleko widzący) – jest narzędziem, które służy do obserwacji odległych obiektów poprzez zbieranie promieniowania elektromagnetycznego (np. światła widzialnego). Pierwsze znane praktyczne teleskopy zostały skonstruowane przy użyciu soczewek ze szkła w Holandii na początku XVII wieku przez Hansa Lippersheya, a wkrótce potem przez Galileusza we Włoszech. Znalazły zastosowanie w działaniach militarnych i w astronomii.

    Istnieje jednak wiele różnic pomiędzy kometami jowiszowymi a obiektami dysku rozproszonego. Mimo że Centaury mają ten sam czerwonawy odcień, ich jądra są zwykle mniej czerwone, co sugeruje że ich skład chemiczny jest zupełnie inny. Możliwym wyjaśnieniem jest wydostawanie się materiału znajdującego się głębiej pod powierzchnią w miarę wzrostu temperatury tych obiektów.

    Linia spektralna — ciemna lub jasna linia w jednolitym, ciągłym widmie, powstającą wskutek nadmiaru lub deficytu fotonów (w porównaniu z pobliskimi częstotliwościami) w wąskim zakresie częstotliwości.Saturn – gazowy olbrzym, szósta planeta Układu Słonecznego pod względem oddalenia od Słońca, druga po Jowiszu pod względem masy i wielkości. Charakterystyczną jego cechą są pierścienie, składające się głównie z lodu i w mniejszej ilości z odłamków skalnych; inne planety-olbrzymy także mają systemy pierścieni, ale żaden z nich nie jest tak rozległy ani tak jasny. Według danych z lipca 2013 roku znane są 62 naturalne satelity Saturna.

    Przypisy

    1. Maggie Masetti: Cosmic Distance Scales – The Solar System. NASA's High Energy Astrophysics Science Archive Research Center, 2007. [dostęp 2012-03-29].
    2. Alessandro Morbidelli. Origin and dynamical evolution of comets and their reservoirs. , 2005 (ang.). [dostęp 2012-03-31]. 
    3. Weissman and Johnson, 2007, Encyclopedia of the solar system, stopka na s. 584
    4. J. Horner, N.W. Evans, M.E. Bailey. Simulations of the Population of Centaurs I: The Bulk Statistics. „Monthly Notices of the Royal Astronomical Society”. 354 (3), s. 798, 2004. DOI: 10.1111/j.1365-2966.2004.08240.x. Bibcode2004MNRAS.354..798H (ang.). [dostęp 2012-03-31]. 
    5. John Keith Davies,: Beyond Pluto: Exploring the Outer Limits of the Solar System. Cambridge University Press, 2001, s. 111. ISBN 0-521-80019-6. (ang.)
    6. Scott S. Sheppard: Small Bodies in the Outer Solar System (ang.). Astronomical Society of the Pacific, 2005-09-16. [dostęp 2012-03-31]. s. 3–14.
    7. Jane Luu, Brian G. Marsden, David Jewitt, et al.. A new dynamical class of object in the outer Solar System. „Nature”. 387 (6633), s. 573–575, 5 czerwca 1997. DOI: 10.1038/42413. Bibcode1997Natur.387..573L (ang.). [dostęp 2012-03-31]. 
    8. David Jewitt: Scattered Kuiper Belt Objects (SKBOs) (ang.). Institute for Astronomy, sierpień 2009. [dostęp 2012-03-31].
    9. Lutz D. Schmadel, (2003). Dictionary of Minor Planet Names (5th rev. and enlarged ed. edition). Berlin: Springer. Page 925 (Appendix 10)
    10. McFadden, Lucy-Ann, Weissman, Paul & Johnson, Torrence (1999). Encyclopedia of the Solar System. San Diego: Academic Press. s. 218.
    11. IAU: Minor Planet Center: List Of Centaurs and Scattered-Disk Objects (ang.). Central Bureau for Astronomical Telegrams, Harvard-Smithsonian Center for Astrophysics, 2012-03-31. [dostęp 2012-03-31].
    12. admin: Sonda New Horizons dostarczyła nowych danych na temat Plutona (pol.). tylkoastronomia.pl, 2015-07-15. [dostęp 2015-07-16].
    13. Comet Populations and Cometary Dynamics. W: Harold F. Levison, Luke Donnes: Encyclopedia of the Solar System. Wyd. 2nd. Academic Press, 2007, s. 575–588. ISBN 0120885891. (ang.)
    14. The Kuiper Belt and the Primordial Evolution of the Solar System. W: Alessandro Morbidelli, M.E. Brown: Comets II. Tucson: University of Arizona Press, 2004-11-01, s. 175–91. ISBN 0816524505. OCLC 56755773. [dostęp 2012-03-31]. (ang.)
    15. Rodney S. Gomes, Julio A. Fernandez, Tabare Gallardo, Adrian Brunini: The Scattered Disk: Origins, Dynamics and End States (ang.). W: Universidad de la Republica, Uruguay [on-line]. 2008. [dostęp 2012-03-31].
    16. M. C. De Sanctis, M. T. Capria, A. Coradini. Thermal Evolution and Differentiation of Edgeworth-Kuiper Belt Objects. „The Astronomical Journal”. 121 (5), s. 2792–2799, 2001. DOI: 10.1086/320385. Bibcode2001AJ....121.2792D (ang.). 
    17. Kuiper Belt Dynamics. W: Alessandro Morbidelli, Harold F. Levison.: Encyclopedia of the Solar System. Wyd. 2nd. Academic Press, 2007, s. 589–604. ISBN 0120885891. (ang.)
    18. J Horner, NW Evans, ME Bailey, DJ Asher. The Populations of Comet-like Bodies in the Solar System. „Monthly Notices of the Royal Astronomical Society”. 343 (4), s. 1057–1066, 2003. DOI: 10.1046/j.1365-8711.2003.06714.x. Bibcode2003MNRAS.343.1057H (ang.). [dostęp 2012-03-31]. 
    19. JPL Small-Body Database Browser: 29981 (1999 TD10) (ang.). 2009-09-30 last obs. used. [dostęp 2014-11-28].
    20. Michael E. Brown: Sedna - The coldest most distant place known in the solar system; possibly the first object in the long-hypothesized Oort cloud (ang.). California Institute of Technology, Department of Geological Sciences. [dostęp 2012-03-31].
    21. Patryk Sofia Lykawka, Tadashi Mukai. Dynamical classification of trans-Neptunian objects: Probing their origin, evolution, and interrelation. „Icarus”. 189 (1), s. 213–232, 2007. DOI: 10.1016/j.icarus.2007.01.001. Bibcode2007Icar..189..213L (ang.). [dostęp 2012-03-31]. 
    22. Brett Gladman: Evidence for an Extended Scattered Disk? (ang.). W: Observatoire de la Cote d'Azur [on-line]. [dostęp 2012-03-31].
    23. The Solar System Beyond The Planets. W: David C. Jewitt, A. Delsanti: Solar System Update : Topical and Timely Reviews in Solar System Sciences. Springer-Praxis Ed., 2006. ISBN 3-540-26056-0. (ang.)
    24. Rodney S. Gomes, John J. Matese, Jack J. Lissauer. A distant planetary-mass solar companion may have produced distant detached objects. „Icarus”. 184 (2), s. 589–601, October 2006. DOI: 10.1016/j.icarus.2006.05.026. Bibcode2006Icar..184..589G (ang.).  dostępna kopia w pdf
    25. Alessandro Morbidelli, Harold F. Levison. Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12. „The Astronomical Journal”. 128 (5), s. 2564–2576, November 2004. DOI: 10.1086/424617. Bibcode2004AJ....128.2564M (ang.). [dostęp 2012-03-31]. 
    26. J. L. Elliot, S. D. Kern, K. B. Clancy, et al.. The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population. „The Astronomical Journal”. 129 (2), s. 1117–1162, 2005. DOI: 10.1086/427395. Bibcode2005AJ....129.1117E (ang.). 
    27. B. Gladman, B. Marsden, C. VanLaerhoven. Nomenclature in the Outer Solar System. „The Solar System Beyond Neptune”, s. 43, 2008. Bibcode2008ssbn.book...43G (ang.). [dostęp 2012-03-31]. 
    28. F. Bertoldi, W. Altenhoff, A. Weiss, E. Menten, M.C. Thum. The trans-neptunian object UB313 is larger than Pluto. „Nature”. 439 (7076), s. 563–4, 2006. DOI: 10.1038/nature04494. PMID: 16452973. Bibcode2006Natur.439..563B (ang.). [dostęp 2012-03-31]. 
    29. Chadwick A. Trujillo, David C. Jewitt and Jane X. Luu. Population of the Scattered Kuiper Belt. „The Astrophysical Journal”. 529 (2), s. L103–L106, 2000-02-01. DOI: 10.1086/312467. PMID: 10622765. Bibcode2000ApJ...529L.103T (ang.). [dostęp 2012-03-31]. 
    30. Harold F. Levison, Alessandro Morbidelli: The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration (ang.). 2003. [dostęp 2012-03-31].
    31. Martin J. Duncan, Harold F. Levison. A Disk of Scattered Icy Objects and the Origin of Jupiter-Family Comets. „Science”. 276 (5319), s. 1670–1672, 1997. DOI: 10.1126/science.276.5319.1670. PMID: 9180070. Bibcode1997Sci...276.1670D (ang.). 
    32. Harold F. Levison, Martin J. Duncan. From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets. „Icarus”. 127 (1), s. 13–32, 1997. DOI: 10.1006/icar.1996.5637. Bibcode1997Icar..127...13L (ang.). [dostęp 2012-03-31]. 
    33. Kathryn Hansen: Orbital shuffle for early solar system (ang.). W: Geotimes [on-line]. 2005-06-07. [dostęp 2012-03-31].
    34. Joseph M. Hahn, Renu Malhotra. Neptune's Migration into a Stirred–Up Kuiper Belt: A Detailed Comparison of Simulations to Observations. „Astronomical Journal”. 130 (5), s. 2392, 13 lipca 2005. DOI: 10.1086/452638. Bibcode2005AJ....130.2392H (ang.). 
    35. E. W. Thommes, M.J. Duncan, H.F. Levison. The Formation of Uranus and Neptune Among Jupiter and Saturn. „The Astronomical Journal”. 123 (5), s. 2862–83, May 2002. DOI: 10.1086/339975. Bibcode2002AJ....123.2862T (ang.). 
    36. Joseph M. Hahn, Renu Malhotra. Neptune's Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations. „The Astronomical Journal”. 130 (5), s. 2392–414, November 2005. DOI: 10.1086/452638. Bibcode2005AJ....130.2392H (ang.). 
    37. Kuiper Belt Objects: Physical Studies. W: Stephen C. Tegler: Encyclopedia of the Solar System. Wyd. 2nd. Academic Press, 2007, s. 605–620. ISBN 0120885891. (ang.)
    38. Michael E. Brown, Chadwick A. Trujillo, David L. Rabinowitz. Discovery of a Planetary-sized Object in the Scattered Kuiper Belt. „The Astrophysical Journal”. 635 (1), s. L97–L100, 2005. DOI: 10.1086/499336. Bibcode2005ApJ...635L..97B (ang.). 
    39. Brett Gladman. The Kuiper Belt and the Solar System's Comet Disk. „Science”. 307 (5706), s. 71–75, 2005. DOI: 10.1126/science.1100553. PMID: 15637267. Bibcode2005Sci...307...71G (ang.). 
    40. David C Jewitt. From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter. „The Astronomical Journal”. 123 (2), s. 1039–1049, 2001. DOI: 10.1086/338692. Bibcode2002AJ....123.1039J (ang.). 
    Komputer (z ang. computer od łac. computare – liczyć, sumować; dawne nazwy używane w Polsce: mózg elektronowy, elektroniczna maszyna cyfrowa, maszyna matematyczna) – maszyna elektroniczna przeznaczona do przetwarzania informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego.9P/Tempel (lub Tempel 1) – kometa okresowa należąca do rodziny komet Jowisza. Była celem misji kosmicznej Deep Impact, mającej na celu przeprowadzenie badań naukowych tej komety. Jedno z zadań polegało na wypuszczeniu z sondy tzw. impaktora, który uderzył w jądro komety.


    Podstrony: [1] [2] 3 [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Małe ciało Układu Słonecznego – obiekt astronomiczny krążący wokół Słońca, który nie jest ani planetą, ani planetą karłowatą.
    Spacewatch – projekt badawczy Uniwersytetu Arizony, specjalizujący się w badaniu małych obiektów Układu Słonecznego, w szczególności zaś rozmaitych typów planetoid i komet.
    Jowisz – piąta w kolejności oddalenia od Słońca i największa planeta Układu Słonecznego. Jego masa jest nieco mniejsza niż jedna tysięczna masy Słońca, a zarazem dwa i pół raza większa niż łączna masa wszystkich innych planet w Układzie Słonecznym. Wraz z Saturnem, Uranem i Neptunem tworzy grupę gazowych olbrzymów, nazywaną czasem również planetami jowiszowymi.
    Parametr Tisseranda – używany w mechanice nieba parametr stosowany na rozwiązanie problemu trzech ciał. Parametr ten jest wykorzystywany głównie na określenie wpływu Jowisza na orbitalny ruch wokół Słońca planetoid i komet znajdujących się w wewnętrznej części Układu Słonecznego.
    Pluton (oznaczenie oficjalne: (134340) Pluton) – planeta karłowata, plutoid, najjaśniejszy obiekt pasa Kuipera. Został odkryty w 1930 roku przez amerykańskiego astronoma Clyde’a Tombaugha. Od odkrycia do 2006 r. Pluton był uznawany za dziewiątą planetę Układu Słonecznego. 24 sierpnia 2006 r. Międzynarodowa Unia Astronomiczna odebrała Plutonowi status planety, co oznacza, że w Układzie Słonecznym jest teraz tylko 8 planet. Pluton należy do szerszej grupy obiektów transneptunowych. Płaszczyzna, po której się porusza, jest mocno nachylona do płaszczyzny ekliptyki, z silnie ekscentryczną orbitą, która częściowo przebiega wewnątrz orbity Neptuna. Plutona obiega co najmniej pięć księżyców, z których jeden, Charon, jest tylko o połowę mniejszy od niego.
    PMID (ang. PubMed Identifier, PubMed Unique Identifier) – unikatowy identyfikator przypisany do każdego artykułu naukowego bazy PubMed.
    Uran − gazowy olbrzym, siódma w kolejności od Słońca planeta Układu Słonecznego. Jest także trzecią pod względem wielkości i czwartą pod względem masy planetą naszego systemu. Nazwa planety pochodzi od Uranosa, który był bogiem i uosobieniem nieba w mitologii greckiej (klasyczna greka: Οὐρανός), ojcem Kronosa (Saturna) i dziadkiem Zeusa (Jowisza). Choć jest widoczny gołym okiem, podobnie jak pięć innych planet, umknął uwadze starożytnych obserwatorów ze względu na niską jasność i powolny ruch po sferze niebieskiej. Sir William Herschel ogłosił odkrycie planety w dniu 13 marca 1781, po raz pierwszy w historii nowożytnej rozszerzając znane granice Układu Słonecznego. Uran to również pierwsza planeta odkryta przy pomocy teleskopu.

    Reklama

    Czas generowania strony: 0.197 sek.