• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Detekcja neutronów

    Przeczytaj także...
    Promieniowanie gamma – wysokoenergetyczna forma promieniowania elektromagnetycznego. Za promieniowanie gamma uznaje się promieniowanie o energii kwantu większej od 50 keV. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego. W wielu publikacjach rozróżnienie promieniowania gamma oraz promieniowania X (rentgenowskiego) opiera się na ich źródłach, a nie na długości fali. Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym. Promieniowania gamma oznacza się grecką literą γ, analogicznie do korpuskularnego promieniowania alfa (α) i beta (β).Detekcja promieniowania jądrowego – metody i przyrządy do detekcji promieniowania jądrowego i innych rodzajów promieniowania jonizującego, jak promieniowanie X, γ, neutrony, protony itp. W detektorach wykorzystujących oddziaływanie danego rodzaju promieniowania z materią.
    Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.

    Detekcja neutronówneutrony rejestruje się mierząc efekty wtórne oddziaływania promieniowania neutronowego i tzw. materiałów tarczowych. W wyniku reakcji z neutronami generują cząstki jonizujące jak: fotony gamma, cząstki alfa, fragmenty rozszczepień.

    Izotopy – odmiany pierwiastka chemicznego różniące się liczbą neutronów w jądrze atomu (z definicji atomy tego samego pierwiastka mają tę samą liczbę protonów w jądrze). Izotopy tego samego pierwiastka różnią się liczbą masową (łączną liczbą neutronów i protonów w jądrze), ale mają tę samą liczbę atomową (liczbę protonów w jądrze).Neutrony termiczne to neutrony o energii kinetycznej porównywalnej z energią ruchu cieplnego w temperaturze zbliżonej do pokojowej T = 295 K, jest to energia równa

    Problemy w detekcji neutronów[]

    Neutron jest cząstką elementarną nie posiadającą ładunku elektrycznego. Oznacza to, że nie jest możliwa bezpośrednia jonizacja materii/środowiska z którym oddziałuje. Specyficzną formą oddziaływania neutronów z materią są reakcje jądrowe (neutron jest składnikiem jądra atomu). Stąd bezpośrednia detekcja neutronów jest niezwykle trudna, tym bardziej, że w zależności od energii, neutrony różnie oddziałują z materią.

    Licznik Geigera (licznik Geigera-Müllera) – urządzenie opracowane przez Hansa Geigera wraz z Walterem Müllerem w 1928 roku, służące do detekcji promieniowania jądrowego.Jądro odrzutu – jądro atomowe, powstające w wyniku rozpadu promieniotwórczego. Jądro to w wyniku odrzutu uzyskuje pędu o takiej samej wartości co wyemitowana cząstka lecz przeciwnym zwrocie. Zjawisko to ma znaczenie głównie w przypadku rozpadów alfa ze względu na znaczącą masę cząstki α (w porównaniu z masą elektronu powstającego w rozpadzie β).

    Neutrony można też wykrywać badając ich rozpraszanie sprężyste w materii, gdy powstają jądra odrzutu (w detektorach: zwykle wodoru).

    Najbardziej chętnymi neutronami do oddziaływania są neutrony o niższych energiach.

    Aby detekcja neutronów o danej energii była jak najbardziej wydajna, należy użyć jako materiału tarczowego pierwiastków o jak największym przekroju czynnym na oddziaływanie z neutronami. Dla wielu jąder przekrój czynny zależy od odwrotności prędkości neutronów (dla energii neutronów bliskich energii neutronów termicznych), a ponadto w zależności przekroju czynnego od energii neutronów dla wyższych energii występują często tzw. piki rezonansowe. Piki rezonansowe świadczą o wzroście przekroju czynnego na oddziaływanie z neutronami dla określonych energii.

    Promieniowanie alfa – promieniowanie jonizujące emitowane przez rozpadające się jądra atomowe, będące strumieniem cząstek alfa, które są jądrami helu.Ładunek elektryczny ciała (lub układu ciał) – fundamentalna właściwość materii przejawiająca się w oddziaływaniu elektromagnetycznym ciał obdarzonych tym ładunkiem. Ciała obdarzone ładunkiem mają zdolność wytwarzania pola elektromagnetycznego oraz oddziaływania z tym polem. Oddziaływanie ładunku z polem elektromagnetycznym jest określone przez siłę Lorentza i jest jednym z oddziaływań podstawowych.

    Należy przy tym pamiętać, że zależność przekroju czynnego na oddziaływanie neutronów z materią ściśle zależy od materiału tarczowego i dla każdego izotopu jest inne.

    Detektory[]

    Do najpopularniejszych detektorów promieniowania neutronowego należą:

  • licznik proporcjonalny z trójfluorkiem boru (BF3)
  • licznik helowy (He)
  • licznik litowy (Li)
  • rozszczepieniowa komora jonizacyjna
  • Licznik Geigera-Müllera z osłoną/nakładką kadmową
  • licznik wodorowy (neutrony prędkie)
  • licznik scyntylacyjny z kryształem siarczku cynku ZnS(Ag)
  • detektor progowy - wykorzystujący substancję, której aktywacja wymaga od neutronów odpowiedniej energii. Szereg różnych materiałów pozwala badać widmo neutronów
  • Ponadto do detekcji neutronów wykorzystuje się często metodę aktywacyjną (detektor aktywacyjny).

    Neutron (z łac. neuter – "obojętny") – cząstka subatomowa występująca w jądrach atomowych. Jest obojętny elektrycznie. Posiada spin ½.Licznik scyntylacyjny – detektor promieniowania jonizującego. Podstawą działania jest zjawisko scyntylacji, zachodzące w niektórych substancjach pod wpływem bombardowania ich cząstkami naładowanymi: podczas przechodzenia przez scyntylator cząstki jonizującej wytwarzane są jony i elektrony, które z kolei są źródłem emisji fotonów, obserwowanych w postaci błysków świetlnych. Ogromny rozwój techniki liczników scyntylacyjnych wiąże się z rozwojem technologii produkcji odpowiednich do tych celów scyntylatorów, nie pochłaniających swego promieniowania "własnego".

    Ze względu na to, że większość przedstawionych detektorów przeznaczona jest do detekcji neutronów termicznych, to często umieszcza się powyższe urządzenia w blokach parafinowych lub plastikowych, to jest materiałach zawierających pierwiastki lekkie, które służą do spowalniania neutronów. Inną znaną substancją spowalniającą neutrony prędkie do neutronów lekkich jest tzw. ciężka woda (D2O).

    Przekrój czynny – wielkość fizyczna stosowana w statystycznym opisie zderzeń cząstek bądź obiektów. Określa prawdopodobieństwo zajścia zderzenia, a zdefiniowana jest jako pole powierzchni, mierzone na płaszczyźnie prostopadłej do kierunku ruchu pocisku, w które musi on trafiać, by doszło do zderzenia.Siarczek cynku, ZnS – nieorganiczny związek chemiczny, sól beztlenowa kwasu siarkowodorowego i cynku na II stopniu utlenienia.

    Istnieją jednak metody, dzięki którym można badać spektrum energetyczne wiązek neutronów. Są to metody oparte na wykorzystaniu pików rezonansowych dla różnych pierwiastków, dla zależności przekroju czynnego od energii neutronu.

    Zobacz też[]

  • detekcja promieniowania jądrowego
  • Bibliografia[]

  • G. F. Knoll: Radiation Detection and Measurement, John Wiley & Sons, Inc., 1986
  • B. Dziunikowski, S. J. Kalita: Ćwiczenia laboratoryjne z jądrowych metod pomiarowych, 1440 skrypty uczelniane AGH, Kraków 1995



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Ciężka woda, HDO lub D2O – woda, w której znaczącą część atomów wodoru stanowi izotop H, czyli deuter, którego jądro zbudowane jest z protonu i neutronu (podczas gdy jądro protu (H) w zwykłej wodzie zawiera jedynie proton). Zazwyczaj jako "ciężką wodę" traktuje się D2O, jednak nazwa ta dotyczy także związku, w którym jedynie jeden prot zastąpiony jest deuterem (HDO).
    Detektor cząstek elementarnych jest szczególnym przypadkiem detektora promieniowania jądrowego, służącym do wykrywania obecności i badania własności indywidualnych cząstek elementarnych o wysokich energiach, z reguły przekraczających kilka MeV. Najczęściej detektory cząstek elementarnych wykorzystywane są do detekcji produktów zderzeń cząstek rozpędzonych w akceleratorze lub pochodzących z promieniowania kosmicznego.
    Cząstka elementarna – w fizyce, cząstka, będąca podstawowym budulcem, czyli najmniejszym i nieposiadającym wewnętrznej struktury. Niemniej pojęcie to ze względów historycznych ma trochę inne znaczenie.
    Reakcje jądrowe to przemiany jąder atomowych wywołane ich oddziaływaniem wzajemnym w odległości odpowiadającej zasięgowi sił jądrowych bądź też ich oddziaływaniem z cząstkami elementarnymi lub fotonami. W ich wyniku powstają jądra atomowe innych pierwiastków, innych izotopów tego samego pierwiastka lub jądra tego samego izotopu danego pierwiastka w innym stanie energetycznym. Oddziaływania jądrowe prowadzące do reakcji jądrowych nazywane są często zderzeniami.

    Reklama

    Czas generowania strony: 0.024 sek.