• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Ciepło właściwe



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Cząsteczka (molekuła) – neutralna elektrycznie grupa dwóch lub więcej atomów utrzymywanych razem kowalencyjnym wiązaniem chemicznym. Cząsteczki różnią się od cząstek (np. jonów) brakiem ładunku elektrycznego. Jednakże, w fizyce kwantowej, chemii organicznej i biochemii pojęcie cząsteczka jest zwyczajowo używane do określania jonów wieloatomowych.Gaz – stan skupienia materii, w którym ciało fizyczne łatwo zmienia kształt i zajmuje całą dostępną mu przestrzeń. Właściwości te wynikają z własności cząsteczek, które w fazie gazowej mają pełną swobodę ruchu. Wszystkie one cały czas przemieszczają się w przestrzeni zajmowanej przez gaz i nigdy nie zatrzymują się w jednym miejscu. Między cząsteczkami nie występują żadne oddziaływania dalekozasięgowe, a jeśli, to bardzo słabe. Jedyny sposób, w jaki cząsteczki na siebie oddziałują, to zderzenia. Oprócz tego, jeśli gaz jest zamknięty w naczyniu, to jego cząsteczki stale zderzają się ze ściankami tego naczynia, wywierając na nie określone i stałe ciśnienie.

    Ciepło właściwe – ciepło potrzebne do zwiększenia temperatury ciała w jednostkowej masie o jedną jednostkę

    gdzie ΔQ – dostarczone ciepło; m – masa ciała; ΔT – różnica temperatur

    To samo ciepło właściwe można zdefiniować również dla chłodzenia. W układzie SI jednostką ciepła właściwego jest dżul przez kilogram i przez kelwin:

    Model Debye’a – model fizyczny ciała stałego używany w termodynamice i fizyce ciała stałego, wprowadzony przez Petera Debye’a w 1912 r., pozwalający wyznaczyć ciepło właściwe w zależności od temperatury.Gaz doskonały – zwany gazem idealnym jest to abstrakcyjny, matematyczny model gazu, spełniający następujące warunki:

    Ciepło właściwe jest wielkością charakterystyczną dla danej substancji w danej temperaturze (jest stałą materiałową). Może zależeć od temperatury, dlatego precyzyjniejszy jest wzór zapisany w postaci różniczkowej

    Azot (N, łac. nitrogenium) – pierwiastek chemiczny o liczbie atomowej 7, niemetal z grupy 15 (azotowców) układu okresowego. Stabilnymi izotopami azotu są N i N. Azot w stanie wolnym występuje w postaci dwuatomowej cząsteczki N2. W cząsteczce tej dwa atomy tego pierwiastka są połączone ze sobą wiązaniem potrójnym. Azot jest podstawowym składnikiem powietrza (78,09% objętości), a jego zawartość w litosferze Ziemi wynosi 50 ppm. Wchodzi w skład wielu związków, takich jak: amoniak, kwas azotowy, azotyny oraz wielu ważnych związków organicznych (kwasy nukleinowe, białka, alkaloidy i wiele innych). Azot w fazie stałej występuje w sześciu odmianach alotropowych nazwanych od kolejnych liter greckich (α, β, γ, δ, ε, ζ). Najnowsze badania wykazują prawdopodobne istnienie kolejnych dwóch odmian (η, θ).Stała gazowa (uniwersalna stała gazowa) (oznaczana jako R) – stała fizyczna równa pracy wykonanej przez 1 mol gazu doskonałego podgrzewanego o 1 kelwin (stopień Celsjusza) podczas przemiany izobarycznej.

    Wodór (H, łac. hydrogenium) – pierwiastek chemiczny o liczbie atomowej 1, niemetal z bloku s układu okresowego. Jego izotop, prot, jest najprostszym możliwym atomem, zbudowanym z jednego protonu i jednego elektronu.Równanie stanu jest związkiem między parametrami (funkcjami stanu) układu termodynamicznego, takimi jak ciśnienie P {displaystyle P} , gęstość masy ρ {displaystyle ho } (w przypadku relatywistycznym gęstość masy-energii i gęstość numeryczna cząstek), temperatura T {displaystyle T} , entropia s {displaystyle s} , energia wewnętrzna u {displaystyle u} , który można zapisać w postaci następującego równania:

    Spis treści

  • 1 Ciepło właściwe gazów
  • 2 Ciepło właściwe molowe
  • 3 Wartości
  • 3.1 Ciepła właściwe ciał stałych i cieczy
  • 3.2 Ciepła molowe gazów
  • 3.3 Ciepła właściwe niektórych innych substancji
  • 4 Zobacz też
  • 5 Uwagi
  • 6 Przypisy
  • 7 Bibliografia
  • Ciepło właściwe gazów[]

    Gaz charakteryzuje się ściśliwością, czyli zmianą np. ciśnienia podczas zmiany objętości naczynia, w którym zamknięta jest rozpatrywana ilość gazu. Ściśliwość gazów powoduje, że inną ilość ciepła należy dostarczyć ogrzewając gaz o 1 °C przy niezmiennym ciśnieniu, a inną – przy niezmiennej objętości. W pierwszym przypadku, pozwalamy na pewną ekspansję, czyli wzrost objętości. Powodujemy więc jakby pewne rozprężanie gazu, a więc jego pewne ochłodzenie, czyli należy dostarczyć więcej ciepła, aby uzyskać przyrost temperatury o 1 °C. Jeśli ogrzewamy gaz przy niezmiennej objętości, to powodujemy pewne „jakby-sprężanie” gazu, bo gaz normalnie podczas ogrzewania „chciałby” zwiększyć swoją objętość. Z rozważań tych wynika, że ciepło właściwe przemiany realizowanej przy stałym ciśnieniu (przemiana izobaryczna) będzie zawsze większe, niż ciepło właściwe przemiany realizowanej przy stałej objętości (przemiana izochoryczna).

    Stała materiałowa – fizyczna lub chemiczna właściwość danej substancji, która może być wyrażona liczbowo. Podanie precyzyjnej wartości liczbowej stałej wymaga często określenia warunków zewnętrznych (np. temperatury, ciśnienia, wilgotności). Wartości stałych materiałowych są zazwyczaj podawane w postaci stabelaryzowanej. Są wydawane książki w całości poświęcone prezentacji tych stałych.Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii.

    Stosunek obu tych ciepeł jest wykładnikiem adiabaty κ:

    Ciepło właściwe gazów doskonałych nie zależy od temperatury. Jeśli więc ogrzewamy 1 kg gazu o 1 °C od temperatury 0 °C do 1 °C, to musimy dostarczyć tyle samo ciepła, co podczas ogrzewania od 100 °C do 101 °C. W przypadku gazów rzeczywistych ciepło właściwe (zarówno cp jak i cv) jest zależne od temperatury. Rośnie ono wraz z temperaturą, a więc ogrzewając gaz od 100 °C do 101 °C musimy dostarczyć więcej ciepła, niż ogrzewając tą samą ilość gazu od 0 °C do 1 °C. Zmiana ta komplikuje nieco obliczenia, ponieważ nie możemy zastosować stałej wartości ciepła właściwego do obliczeń. W takim przypadku musimy wykorzystać tzw. średnie ciepło właściwe (ciepło przemiany od temperatury t1 do temperatury t2), określone zależnościami:

    Kelwin – jednostka temperatury w układzie SI równa 1/273,16 temperatury termodynamicznej punktu potrójnego wody, oznaczana K. Definicja ta odnosi się do wody o następującym składzie izotopowym: 0,00015576 mola H na jeden mol H, 0,0003799 mola O na jeden mol O i 0,0020052 mola O na jeden mol O.Objętość – miara przestrzeni, którą zajmuje dane ciało w przestrzeni trójwymiarowej. W układzie SI jednostką objętości jest metr sześcienny, jednostka zbyt duża do wykorzystania w życiu codziennym. Z tego względu najpopularniejszą w Polsce jednostką objętości jest jeden litr (l) (1 l = 1 dm = 0,001 m³).

    gdzie: i – średnie ciepła właściwe podczas ogrzewania gazu od temperatury 0 °C do tx. Ich zależność od temperatury tx dla danego gazu można znaleźć w literaturze.

    Zasada ekwipartycji energii – zasada termodynamiczna mówiąca (w oparciu o mechanikę statystyczną i przy założeniu obowiązywania mechaniki Newtona), że dostępna energia jaką dysponuje cząsteczka (np. gazu) rozkłada się "po równo" na wszelkie możliwe sposoby jej wykorzystania (tzw. stopnie swobody). Niezależnie od tego czy jest to stopień swobody związany z energią obrotu, ruchu postępowego czy związany z drganiami cząstek. Zgodnie z tym prawem średnia energia cząstki (energia o charakterze wewnętrznym - niezwiązana z ruchem całego układu) wynosi:Rozprężanie – proces odwrotny do sprężania, tzn. polegający na obniżeniu ciśnienia układu; zwykle wiąże się z ekspansją .


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przemiana izobaryczna − proces termodynamiczny, podczas którego ciśnienie układu nie ulega zmianie, natomiast pozostałe parametry termodynamiczne czynnika mogą się zmieniać. Procesy izobaryczne mogą zachodzić zarówno w sposób odwracalny, jak i nieodwracalny. Odwracalny proces izobaryczny przedstawia na wykresie krzywa zwana izobarą. Praca wykonana przez układ (lub nad układem) w odwracalnym procesie izobarycznym jest równa ubytkowi (lub przyrostowi) entalpii układu. W szczególności, gdy jedyny wkład do pracy stanowi praca objętościowa (polegająca na zmianie objętości układu), jest ona wyrażona wzorem:
    Przemiana izochoryczna – proces termodynamiczny zachodzący przy stałej objętości (V = const). Oprócz objętości wszystkie pozostałe parametry termodynamiczne mogą się zmieniać.
    Równanie Clapeyrona, równanie stanu gazu doskonałego to równanie stanu opisujące związek pomiędzy temperaturą, ciśnieniem i objętością gazu doskonałego, a w sposób przybliżony opisujący gazy rzeczywiste. Sformułowane zostało w 1834 roku przez Benoîta Clapeyrona. Prawo to można wyrazić wzorem
    Ciśnienie – wielkość skalarna określona jako wartość siły działającej prostopadle do powierzchni podzielona przez powierzchnię na jaką ona działa, co przedstawia zależność:
    Helowce (gazy szlachetne) – pierwiastki chemiczne ostatniej, 18 (dawn. 0 lub VIII głównej) grupy układu okresowego. Do pierwiastków tych zalicza się: hel, neon, argon, krypton, ksenon, radon. Prawdopodobnie gazem szlachetnym jest również syntetyczny pierwiastek ununoctium.
    Kilogram – jednostka masy, jednostka podstawowa układu SI, oznaczana kg. Jest to masa międzynarodowego wzorca (walca o wysokości i średnicy podstawy 39 mm wykonanego ze stopu platyny z irydem) przechowywanego w Międzynarodowym Biurze Miar i Wag w Sèvres koło Paryża. Wzorzec kilograma został usankcjonowany uchwałą I Generalnej Konferencji Miar (Conférence Générale des Poids et Mesures, CGPM) w 1889.
    Ekspansja – proces termodynamiczny polegający na zwiększaniu się objętości układu z wykonywaniem przez układ pracy. Rezultatem adiabatycznej ekspansji gazu jest obniżenie się jego temperatury. Procesem odwrotnym do ekspansji jest kompresja.

    Reklama

    Czas generowania strony: 0.049 sek.