• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Ciało - matematyka



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Monomorfizm – w teorii kategorii morfizm f : X → Y {displaystyle fcolon X o Y} mający lewostronną własność skracania w tym sensie, że dla wszystkich morfizmów g 1 , g 2 : Z → X {displaystyle g_{1},g_{2}colon Z o X} zachodziFunkcja wymierna – funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. Można powiedzieć, że funkcje wymierne mają się tak do funkcji wielomianowych jak liczby wymierne do liczb całkowitych.

    Ciałostruktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.

    Ideał maksymalny – w teorii pierścieni ideał, który jest maksymalny (względem zawierania zbiorów) wśród wszystkich ideałów właściwych danego pierścienia; innymi słowy jest to taki ideał właściwy, który nie zawiera się w żadnym innym ideale danego pierścienia.Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.

    Spis treści

  • 1 Historia nazwy
  • 2 Definicja
  • 2.1 Ciało nieprzemienne
  • 3 Własności
  • 3.1 Ciała skończone i nieskończone
  • 4 Podciała i rozszerzenia
  • 5 Przykłady
  • 6 Konstrukcje
  • 7 Zobacz też
  • 8 Przypisy
  • 9 Bibliografia
  • Historia nazwy[]

    Pojęcia ciała (bez nadawania mu nazwy) używał już Évariste Galois, który odkrył i sklasyfikował ciała skończone; później podobnie postąpił Bernhard Riemann (w 1857), którego interesowały ciała funkcji meromorficznych. Richard Dedekind podał formalną definicję ciała pod nazwą dziedzina wymierności. Nazwa Körper (niem. ciało) pojawiła się podobno po raz pierwszy w Teorii liczb Dirichleta, w sensie zespół, poczet albo ucieleśnienie elementów powstających z operacji wymiernych (dodawanie, odejmowanie, mnożenie, dzielenie). Problem pierwszeństwa jest skomplikowany: Dedekind był uczniem Dirichleta, napisał Suplementy do jego wykładów; w XI Suplemencie (IV wydanie, Brunszwik 1894) używana jest nazwa ciało. Angielscy matematycy używali krótko łacińskiego odpowiednika corpus, zaś francuscy matematycy używają do dziś pokrewnego corps (ozn. ciało). Używane teraz w języku angielskim słowo field (dosł. pole) wprowadzili zapewne amerykańscy algebraicy, którzy początkowo używali również nazwy realm (dosł. dziedzina, królestwo).

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Jerzy Browkin (ur. 5 listopada 1934, zm. 23 listopada 2015 w Warszawie) – polski matematyk zajmujący się algebraiczną teorią liczb. W 1994, wspólnie z Juliuszem Brzezińskim, sformułował n-hipotezę, tj. uogólnienie hipotezy abc na liczby całkowite n ≥ 3.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Johann Peter Gustav Lejeune Dirichlet (ur. 13 lutego 1805 w Düren, zm. 5 maja 1859 w Getyndze) – niemiecki matematyk francuskiego pochodzenia.
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    1 (jeden, jedność) – liczba naturalna następująca po 0 i poprzedzająca 2. 1 jest też cyfrą wykorzystywaną do zapisu liczb w różnych systemach, np. w dwójkowym (binarnym), ósemkowym, dziesiętnym i szesnastkowym systemie liczbowym. Każda liczba całkowita jest podzielna przez 1.
    Twierdzenie Wedderburna – twierdzenie mówiące, że każdy skończony pierścień z dzieleniem, tj. taki, w którym każdy niezerowy element jest odwracalny, jest ciałem (tzn. działanie mnożenia jest przemienne). Dowód w 1905 roku podał Joseph Wedderburn, któremu twierdzenie zawdzięcza swoją nazwę.
    W matematyce p-adyczny system liczbowy dla dowolnej liczby pierwszej p stanowi rozszerzenie arytmetyki liczb wymiernych w sposób istotnie różny od rozszerzenia do liczb rzeczywistych bądź zespolonych. Rozszerzenie to uzyskuje się przez alternatywną interpretację pojęcia "bliskości" czy też wartości bezwzględnej. W szczególności, dwie liczby p-adyczne są bliskie, gdy ich różnica jest podzielna przez wysoką potęgę p. Ta własność sprawia, że liczby p-adyczne dobrze służą do opisu kongruencji. Okazuje się, że dzięki temu znajdują zastosowanie w teorii liczb, w tym w słynnym dowodzie Wielkiego Twierdzenia Fermata odkrytym przez Andrew Wilesa.

    Reklama