• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Ciąg subnormalny



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.Łańcuchy to w teorii częściowych porządków i w teorii mnogości podzbiory porządku na których relacja porządkująca jest spójna.

    Ciąg – jedno z kilku powiązanych pojęć teorii grup pomocne przy badaniu struktury danej grupy; zwykle przez „ciąg” rozumie się opisany dalej ciąg podnormalny. W ogólności ciągiem podgrup danej grupy nazywa się po prostu łańcuch jej podgrup; ciągi podgrup są przypadkiem szczególnym filtracji znanej z algebry abstrakcyjnej.

    Grupa rozwiązalna – w matematyce, jest to grupa, dla której istnieje ciąg subnormalny o abelowych faktorach (przemiennych ilorazach).Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.
    Grupa prosta – nietrywialna grupa nie mająca właściwych podgrup normalnych, czyli jedynymi grupami normalnymi są w niej grupa trywialna i ona sama.
    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.
    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.
    Grupa (czwórkowa) Kleina – najmniejsza niecykliczna grupa abelowa. Jej nazwa pochodzi od nazwiska Felixa Kleina, niemieckiego matematyka, który jako pierwszy opisał jej własności w wydanej w roku 1884 książce Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade („Wykłady o ikosaedrze i rozwiązywaniu równań piątego stopnia”).

    Reklama

    Czas generowania strony: 0.032 sek.