• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Ciągły rozkład prawdopodobieństwa



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.
    Od góry: dystrybuanta pewnego dyskretnego rozkładu, rozkładu ciagłego, oraz rozkładu, który nie jest ani ciągły, ani dyskretny.

    Ciągły rozkład prawdopodobieństwa - rozkład prawdopodobieństwa dla którego dystrybuanta jest funkcją ciągłą. Stosowana jest też węższa definicja, przedstawiona poniżej w sekcji bezwzględna ciągłość.

    Rozkład jednostajny (zwany też jednorodnym, równomiernym) to rozkład prawdopodobieństwa o funkcji rozkładu stałej w całym nośniku rozkładu.Rozkład beta – ciągły rozkład prawdopodobieństwa dany funkcją gęstości zdefiniowaną na przedziale [ 0 , 1 ] {displaystyle [0,1]} wzorem

    Dla rozkładów ciągłych suma nieskończonej liczby zdarzeń o zerowym prawdopodobieństwie może być zdarzeniem o dodatnim prawdopodobieństwie. Obrazowo - pojedynczy punkt ma zerowe rozmiary, jednak odcinek złożony z nieskończonej liczby takich punktów ma już niezerową długość. Podobne zjawisko nie zachodzi dla rozkładów dyskretnych.

    Centralne twierdzenie graniczne – jedno z najważniejszych twierdzeń rachunku prawdopodobieństwa, uzasadniające powszechne występowanie w przyrodzie rozkładów zbliżonych do rozkładu normalnego.Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.

    Spis treści

  • 1 Bezwzględna ciągłość
  • 2 Przykłady
  • 3 Zobacz też
  • 4 Linki zewnętrzne


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Kwant – najmniejsza porcja, jaką może mieć lub o jaką może zmienić się dana wielkość fizyczna w pojedynczym zdarzeniu; np. kwant energii, kwant momentu pędu, kwant strumienia magnetycznego, kwant czasu.
    Funkcja gęstości prawdopodobieństwa ( gęstość zmiennej losowej ) – nieujemna funkcja rzeczywista, określona dla rozkładu prawdopodobieństwa, taka że całka z tej funkcji, obliczona w odpowiednich granicach, jest równa prawdopodobieństwu wystąpienia danego zdarzenia losowego. Funkcję gęstości definiuje się dla rozkładów prawdopodobieństwa jednowymiarowych i wielowymiarowych. Rozkłady mające gęstość nazywane są rozkładami ciągłymi.
    Dyskretny rozkład prawdopodobieństwa to w probabilistyce rozkład prawdopodobieństwa zmiennej losowej dający się opisać przez podanie wszystkich przyjmowanych przez nią wartości, wraz z prawdopodobieństwem przyjęcia każdej z nich. Funkcja przypisująca prawdopodobieństwo do konkretnej wartości zmiennej losowej jest nazywana funkcją rozkładu prawdopodobieństwa (probability mass function, pmf). Zachodzi:
    Dystrybuanta (fr. distribuer „rozdzielać, rozdawać”) – w rachunku prawdopodobieństwa, statystyce i dziedzinach pokrewnych, funkcja rzeczywista jednoznacznie wyznaczająca rozkład prawdopodobieństwa (tj. miarę probabilistyczną określoną na σ-ciele borelowskich podzbiorów prostej), a więc zawierająca wszystkie informacje o tym rozkładzie. Dystrybuanty są efektywnym narzędziem badania prawdopodobieństwa, ponieważ są obiektami prostszymi niż rozkłady prawdopodobieństwa. W statystyce dystrybuanta rozkładu próby zwana jest dystrybuantą empiryczną i jest blisko związana z pojęciem rangi.
    Rozkład gamma to ciągły rozkład prawdopodobieństwa, którego gęstość jest uogólnieniem rozkładu Erlanga na dziedzinę dodatnich liczb rzeczywistych. Rozkład gamma ze względu na klasyfikację Pearsona jest rozkładem typu 3.
    Dyskretny rozkład prawdopodobieństwa to w probabilistyce rozkład prawdopodobieństwa zmiennej losowej dający się opisać przez podanie wszystkich przyjmowanych przez nią wartości, wraz z prawdopodobieństwem przyjęcia każdej z nich. Funkcja przypisująca prawdopodobieństwo do konkretnej wartości zmiennej losowej jest nazywana funkcją rozkładu prawdopodobieństwa (probability mass function, pmf). Zachodzi:

    Reklama