• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Baza przestrzeni topologicznej



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Podbaza przestrzeni topologicznej – rodzina zbiorów otwartych przestrzeni topologicznej mająca tę własność, że rodzina wszystkich części wspólnych skończonej liczby zbiorów podbazy jest bazą przestrzeni.

    Baza przestrzeni topologicznej – dla danej przestrzeni topologicznej rodzina otwartych podzbiorów przestrzeni o tej własności, że każdy zbiór otwarty w można przedstawić w postaci sumy pewnej podrodziny zawartej w bazie. Każda przestrzeń topologiczna ma bazę – jeżeli jest topologią w zbiorze to jest ona również (trywialnie) jej bazą. Obrazowo, baza przestrzeni topologicznej to taka rodzina zbiorów otwartych, że każdy niepusty i otwarty podzbiór tej przestrzeni można wysumować przy pomocy pewnych (być może nieskończenie wielu) elementów bazy. W praktyce matematycznej związanej z badaniem własności konkretnych przestrzeni topologicznych, istotnym zagadnieniem jest pytanie o minimalną moc bazy przestrzeni (zob. ciężar przestrzeni poniżej). Tak zdefiniowane pojęcie nosi też czasem nazwę bazy otwartej (zob. też baza domknięta poniżej). Pojęcia pokrewne pojęciu bazy przestrzeni topologicznej to, na przykład, π-baza, podbaza czy pseudobaza.

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.

    Przykłady[ | edytuj kod]

  • rodzina wszystkich przedziałów otwartych na prostej rzeczywistej jest bazą w naturalnej topologii prostej (tj. topologii wyznaczonej przez metrykę); bazą tej topologii jest również rodzina wszystkich ograniczonych przedziałów otwartych o końcach wymiernych.
  • rodzina wszystkich kul otwartych w dowolnej przestrzeni metrycznej jest bazą w naturalnej (tj. metrycznej) topologii tej przestrzeni,
  • rodzina wszystkich kwadratów otwartych na płaszczyźnie jest bazą płaszczyzny w topologii euklidesowej.
  • rodzina kwadratów otwartych o bokach równoległych do osi współrzędnych.
  • rodzina kwadratów otwartych o bokach równoległych do osi współrzędnych i wierzchołkach mających współrzędne wymierne.
  • rodzina wszystkich przedziałów postaci gdzie i są liczbami rzeczywistymi i jest bazą topologii w zbiorze liczb rzeczywistych, nazywaną topologią strzałki.
  • Zbieżność punktowa – własność ciągu funkcji, tzw. ciągu funkcyjnego, mówiąca, iż ciąg wartości dla każdego argumentu funkcji jest zbieżny.Ryszard Engelking, prof. (ur. 1935 w Sosnowcu) – polski matematyk specjalizujący się w topologii, szczególnie w teorii wymiaru. Autor wielu książek i publikacji z tego zakresu, w tym Topologii ogólnej (przetłumaczonej na angielski), która jest klasyczną pozycją literatury przedmiotu. Ponadto tłumacz literatury francuskiej.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
    Prostą Sorgenfreya (lub prosta z topologią strzałki) - zbiór liczb rzeczywistych z topologią, wprowadzoną przez bazę postaci:
    Przestrzeń regularna i przestrzeń T 3 {displaystyle T_{3}} to terminy w topologii odnoszące się do tej samej lub bardzo pokrewnych własności oddzielania.
    Odwzorowanie otwarte i odwzorowanie domknięte – terminy w topologii odnoszące się do specjalnych własności funkcji pomiędzy przestrzeniami topologicznymi.
    Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.

    Reklama

    Czas generowania strony: 0.016 sek.