• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Błądzenie losowe



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Graf planarny – graf, który można narysować na płaszczyźnie tak, by krzywe obrazujące krawędzie grafu nie przecinały się ze sobą. Odwzorowanie grafu planarnego na płaszczyznę o tej własności nazywane jest jego rysunkiem płaskim. Graf planarny o zbiorze wierzchołków i krawędzi zdefiniowanym poprzez rysunek płaski nazywany jest grafem płaskim.Graf to – w uproszczeniu – zbiór wierzchołków, które mogą być połączone krawędziami, w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków (ilustracja po prawej stronie). Grafy to podstawowy obiekt rozważań teorii grafów. Za pierwszego teoretyka i badacza grafów uważa się Leonarda Eulera, który rozstrzygnął zagadnienie mostów królewieckich.

    Błądzenie losowe – pojęcie z zakresu matematyki i fizyki określające ruch losowy: w kolejnych chwilach czasu cząstka („chodziarz”) przemieszcza się z aktualnego położenia do innego, losowo wybranego. Błądzenie losowe jest przykładem prostego procesu stochastycznego.

    Przykładami procesów, które można modelować za pomocą błądzenia losowego są: ruch molekuły w cieczy czy gazie, zmiany ceny wybranego towaru na giełdzie, zmiany finansów gracza w kasynie.

    Proces stochastyczny - rodzina zmiennych losowych określonych na pewnej przestrzeni probabilistycznej o wartościach w pewnej przestrzeni mierzalnej. Najprostszym przykładem procesu stochastycznego jest wielokrotny rzut monetą: dziedziną funkcji jest zbiór liczb naturalnych (liczba rzutów), natomiast wartością funkcji dla danej liczby jest jeden z dwóch możliwych stanów losowania (zdarzenie), orzeł lub reszka. Nie należy mylić procesu losowego, którego wartości są zdarzeniami losowymi, z funkcją, która zdarzeniom przypisuje wartość prawdopodobieństwa ich wystąpienia (mamy wówczas do czynienia z rozkładem gęstości prawdopodobieństwa).Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    Spis treści

  • 1 Klasyfikacja procesów błądzenia losowego
  • 2 Błądzenie na prostej
  • 3 Symulacja błądzenia na prostej
  • 4 Błądzenia na płaszczyźnie
  • 5 Trajektorie błądzenia losowego
  • 6 Błądzenie losowe na grafie


  • Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
    Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.
    Sieć elektroenergetyczna – zbiór przewodów elektrycznych i urządzeń powiązanych pod względem funkcjonalnym i połączonych elektrycznie, przeznaczonych do przesyłania, przetwarzania i rozdzielania na określonym terytorium wytworzonej w elektrowniach energii elektrycznej oraz do zasilania nią odbiorników.
    Proces Markowa – ciąg zdarzeń, w którym prawdopodobieństwo każdego zdarzenia zależy jedynie od wyniku poprzedniego. W ujęciu matematycznym, procesy Markowa to takie procesy stochastyczne, które spełniają własność Markowa.
    Dyfuzja - proces samorzutnego rozprzestrzeniania się cząsteczek lub energii w danym ośrodku (np. w gazie, cieczy lub ciele stałym), będący konsekwencją chaotycznych zderzeń cząsteczek dyfundującej substancji między sobą lub z cząsteczkami otaczającego ją ośrodka. Ze względu na skalę zjawiska, rozpatruje się dwa podstawowe rodzaje dyfuzji:
    Opornik, rezystor (z łac. resistere, stawiać opór) – najprostszy element bierny obwodu elektrycznego, wykorzystywany jest do ograniczenia prądu w nim płynącego. Jest elementem liniowym: występujący na nim spadek napięcia jest wprost proporcjonalny do prądu płynącego przez opornik. Przy przepływie prądu zamienia energię elektryczną w ciepło. Idealny opornik posiada tylko jedną wielkość, która go charakteryzuje – rezystancję. W praktyce występuje jeszcze pojemność wewnętrzna oraz wewnętrzna indukcyjność, co, np. w technice wysokich częstotliwości (RTV), ma duże znaczenie (jest to tzw. pojemność oraz indukcyjność pasożytnicza). W technologii bardzo wysokich częstotliwości – kilkuset megaherców (MHz) i powyżej – właściwości pasożytnicze typowego rezystora muszą być traktowane jako wartości rozproszone, tzn. rozłożone wzdłuż jego fizycznych wymiarów (zobacz: schemat zastępczy).
    W matematyce średnia kwadratowa (RMS ) – przykład miary statystycznej pozwalającej oszacować rząd wielkości serii danych liczbowych lub funkcji ciągłej, użyteczny zwłaszcza w przypadku, gdy wielkości różnią się znakiem.

    Reklama

    Czas generowania strony: 0.014 sek.