• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Automorfizm



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).

    Automorfizmizomorfizm struktury matematycznej na siebie, czyli jej wzajemnie jednoznaczny endomorfizm. W pewnym sensie jest to symetria obiektu – sposób odwzorowania obiektu na siebie przy zachowaniu całej jego struktury.

    Warstwa – w teorii grup podzbiór danej grupy będący jednym z równolicznych elementów jej podziału wyznaczonego przez ustaloną podgrupę, czyli klasa równoważności pewnej relacji równoważności związanej ze wspomnianą podgrupą; jako klasy ustalonej równoważności są one rozłączne, niepuste, a ich zbiór sumuje się do całej grupy.Kategoria – pojęcie wyodrębniające szereg algebraicznych własności rodzin morfizmów między obiektami matematycznymi tego samego typu (zbiorów, przestrzeni topologicznych, przestrzeni liniowych, grup itp.) pod warunkiem, że te rodziny zawierają odwzorowanie tożsamościowe i są zamknięte względem kolejnego wykonywania superpozycji (lub iloczynu) odwzorowań. Pojęcie kategorii zostało wprowadzone w pracy Eilenberga i Mac Lane.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Charakterystyka – dla danego pierścienia z jedynką najmniejsza liczba elementów neutralnych mnożenia pierścienia (tzw. jedynek), które należy do siebie dodać, aby uzyskać element neutralny dodawania (tzn. zero); mówi się, że pierścień ma charakterystykę zero, jeżeli taka liczba nie istnieje. Innymi słowy jest to najmniejsza dodatnia liczba całkowita n , {displaystyle n,} która spełnia
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Homomorfizm – funkcja odwzorowująca jedną algebrę ogólną (czyli strukturę algebraiczną taką jak grupa, pierścień czy przestrzeń wektorowa) w drugą, zachowująca przy tym odpowiadające sobie operacje. Jest to podstawowe narzędzie w badaniu i porównywaniu algebr.
    Sprzężenie zespolone – jednoargumentowe działanie algebraiczne określone na liczbach zespolonych polegające na zmianie znaku części urojonej danej liczby zespolonej.
    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.

    Reklama

    Czas generowania strony: 0.023 sek.