• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Arytmetyka modularna



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.RSA – jeden z pierwszych i obecnie najpopularniejszych asymetrycznych algorytmów kryptograficznych z kluczem publicznym, zaprojektowany w 1977 przez Rona Rivesta, Adi Shamira oraz Leonarda Adlemana. Pierwszy algorytm, który może być stosowany zarówno do szyfrowania jak i do podpisów cyfrowych. Bezpieczeństwo szyfrowania opiera się na trudności faktoryzacji dużych liczb złożonych. Jego nazwa pochodzi od pierwszych liter nazwisk jego twórców.

    Arytmetyka modularna, arytmetyka reszt – system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).

    Liczba przeciwna do danej liczby a , {displaystyle a,;} to taka liczba − a , {displaystyle -a,;} że zachodzi:Kongruencja a. przystawanie – relacja równoważności określona w danym systemie algebraicznym. Jedną z najbardziej znanych kongruencji jest przystawanie liczb całkowitych.

    Arytmetyka modularna pojawia się wszędzie tam, gdzie występuje powtarzalność i cykliczność; dotyczy ona samego mierzenia czasu i jako taka jest podstawą działania kalendarza (zob. dalej). Ponadto korzysta się z niej w teorii liczb, teorii grup, kryptografii, informatyce, przy tworzeniu sum kontrolnych, a nawet przy tworzeniu wzorów. Zasada działania szyfru RSA oraz Test Millera-Rabina opierają się na własnościach mnożenia w arytmetyce modularnej liczb całkowitych o module wyrażającym się dużą liczbą pierwszą.

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.

    Motywacja[ | edytuj kod]

     Zapoznaj się również z: zegar.
    Wskazania zegara 12-godzinnego jako przykład zastosowania arytmetyki modularnej.

    Przykładem może być zegar 24-godzinny, w którym doba podzielona jest na 24 godziny numerowane od 0 do 23. Każdej z nich można jednoznacznie przyporządkować okres w ciągu doby, który minął od godziny 0:00 do tej właśnie godziny – np. godzinie 7:00 można przyporządkować okres 7 godzin – można sobie wyobrażać, że w pewnym momencie ustawiono wskazówkę na 7 godzinie. W ten sposób jeśli zegar wskazuje godzinę 20:00, to znaczy, że od godziny 0:00 minęło 20 godzin; podobnie jeśli zegar wskazuje godzinę 8:00, to oznacza, że godzina 0:00 była dokładnie 8 godzin temu.

    Skończenie generowana grupa przemienna – w algebrze abstrakcyjnej grupa przemienna (abelowa), której zbiór generatorów jest skończony. W szczególności, każda skończona grupa abelowa jest skończenie generowana.Jądro – dla danej struktury algebraicznej homomorficzny przeciwobraz elementu neutralnego. Dla danego homomorfizmu f {displaystyle f} jego jądro oznacza się zwykle ker  f {displaystyle {mbox{ker }}f} (od ang. kernel)

    Jeżeli weźmie się jednak pod uwagę okresy dłuższe niż jedna doba, to wspomniane przyporządkowanie nie jest jedynym możliwym: jeśli teraz jest godzina 0:00, to godzinę 4:00 zegar będzie wskazywać tak po 4 godzinach, jak i po 28 godzinach – ogólnie będzie on wskazywał tę samą godzinę po upływie dowolnej liczby pełnych dób (wielokrotności 24 godzin), czyli: wskazania zegara 24-godzinnego powtarzają się co 24 godziny.

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Czas – skalarna (w klasycznym ujęciu) wielkość fizyczna określająca kolejność zdarzeń oraz odstępy między zdarzeniami zachodzącymi w tym samym miejscu. Pojęcie to było również przedmiotem rozważań filozoficznych.

    Obserwacje dotyczące wskazań zegara po dwóch okresach umożliwiają określenie wskazania zegara po upływie czasu równego sumie długości tych okresów: jeżeli zegar wskazywał godzinę 0:00 i upłynęło 19 godzin (wskazuje więc on godzinę 19:00), a następnie kolejne 8 godzin (zegar nastawiony na 0:00 wskazywałby po tym czasie godzinę 8:00), to zegar nie będzie wskazywał godziny „27:00”, lecz godzinę 3:00 – tak, jak gdyby od 0:00 minęły tylko 3 godziny.

    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Tydzień – pozaukładowa jednostka czasu, okres 7 dni. Ta miara czasu związana jest z fazami Księżyca i odpowiada mniej więcej 1/4 miesiąca. Znany już był Babilończykom w drugim tysiącleciu p.n.e. Tydzień został wprowadzony do urzędowego kalendarza Cesarstwa Rzymskiego w 321 r. n.e., a później został przyjęty w średniowiecznym kalendarzu kościelnym.

    Można więc wprowadzić następujące dodawanie wskazań zegara: sumą dwóch godzin jest godzina, którą wskazywałby zegar po upływie okresu od 0:00 do pierwszej z godzin powiększonego o okres, który upłynąłby od 0:00 do drugiej z godzin. Oznacza to, że jeżeli okres jest niemniejszy niż 24 godziny, to zegar wskazywać będzie godzinę równą temu okresowi pomniejszonemu o okres 24 godzin. W ten sposób sumą godzin 12:00 i 21:00 jest godzina 9:00 (a nie 33:00). Cofaniu zegara odpowiadałyby „ujemne” okresy, tym zaś „ujemne” wskazania zegara: okresowi −7 godzin (7 godzin wstecz) odpowiada wskazanie zegara sprzed 7 godzin, gdy wskazuje on w tym momencie godzinę 0:00 – na zegarze 24-godzinnym jest to godzina 17:00. Dlatego też różnicą godzin 3:00 i 4:00 jest godzina 23:00 (a nie −1:00).

    Twierdzenie o dzieleniu z resztą – twierdzenie matematyczne mówiące o możliwości przedstawienia danej liczby całkowitej, dzielnej, w postaci sumy iloczynu ilorazu przez (niezerowy) dzielnik oraz reszty. Innymi słowy twierdzenie mówi, ile razy (iloraz) dana liczba (dzielnik) mieści się w całości w innej (dzielna) oraz jaka część (reszta) tej liczby nie została wydzielona. Stosuje się także skróconą wersję nazwy: twierdzenie o dzieleniu.Pierwiastek pierwotny modulo n {displaystyle n;} to taka liczba, że jej potęgi dają wszystkie możliwe reszty modulo n {displaystyle n;} , które są względnie pierwsze z n {displaystyle n;} .

    Upływ czasu liczy się więc zgodnie z arytmetyką liczb całkowitych, z kolei wskazania zegara są zgodne z arytmetyką modularną o module 24: mierzenie czasu na zegarze rozpoczyna się o godzinie 0:00 „zerując się” po osiągnięciu 24:00, z kolei gdy wskazówka zegara cofa się mijając godzinę 0:00, zegar wskazuje godzinę wcześniejszą niż 24:00.

    Kryptologia (z gr. κρυπτός – kryptos – "ukryty" i λόγος – logos – "słowo") – dziedzina wiedzy o przekazywaniu informacji w sposób zabezpieczony przed niepowołanym dostępem. Współcześnie kryptologia jest uznawana za gałąź zarówno matematyki, jak i informatyki; ponadto jest blisko związana z teorią informacji, inżynierią oraz bezpieczeństwem komputerowym.Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.

    W ten sam sposób można rozpatrywać obliczenia na dniach tygodnia (wykonywane modulo 7) lub na miesiącach (modulo 12). Prawa działań na liczbach takie jak liczba nieparzysta + liczba parzysta = liczba nieparzysta (zob. parzystość liczb) dają się opisać za pomocą arytmetyki modulo 2.

    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).Logarytm dyskretny elementu b {displaystyle b} przy podstawie a {displaystyle a} w danej grupie skończonej – liczba całkowita c {displaystyle c} , dla której zachodzi równość (w notacji multiplikatywnej):


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Homomorfizm – funkcja odwzorowująca jedną algebrę ogólną (czyli strukturę algebraiczną taką jak grupa, pierścień czy przestrzeń wektorowa) w drugą, zachowująca przy tym odpowiadające sobie operacje. Jest to podstawowe narzędzie w badaniu i porównywaniu algebr.
    Podział, rozbicie, partycja zbioru – w matematyce rodzina niepustych, rozłącznych podzbiorów danego zbioru dająca w sumie cały zbiór.
    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.
    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.
    Miesiąc – jednostka czasu. Pierwotnie miesiąc wywodził się z cyklu księżycowego, tj. 29 i pół dnia jakie Księżyc potrzebuje na przejście wszystkich swych faz, czyli miesiąc synodyczny. Geneza ta odbiła się także w dawnej polskiej nazwie, która była synonimem słowa Księżyc (księżyc dosłownie syn księcia, tj. Słońca).
    Relacja symetryczna – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to zachodzi też dla pary ( y , x ) {displaystyle (y,x)} .

    Reklama

    Czas generowania strony: 0.056 sek.