• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Arytmetyka



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Ułamek dziesiętny – zapis liczby rzeczywistej w postaci ułamka, którego mianownik jest potęgą o wykładniku naturalnym liczby 10.Siedem sztuk wyzwolonych (łac. septem artes liberales, właściwie siedem umiejętności godnych człowieka wolnego) – podstawa wykształcenia w okresie późnej starożytności oraz średniowiecza. Siedem sztuk dzielone było na dwie mniejsze grupy – trivium i quadrivium. Kanwą tego podziału było monumentalne, encyklopedyczne dzieło Marka Terencjusza Warrona, zatytułowane Disciplinarum libri IX (Dziewięć ksiąg naukowych).
    Przykład tablic arytmetycznych z XIX w.

    Arytmetyka (łac. arithmetica, gr. ἀριθμητική arithmētikē, z ἀριθμός – liczba) – jedna z najstarszych części matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).

    Podstawowe twierdzenie arytmetyki – ważne twierdzenie teorii liczb o rozkładzie liczb naturalnych na czynniki pierwsze.Kodowanie arytmetyczne – metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana jako jeden z systemów w bezstratnej kompresji danych. Została wynaleziona przez Petera Eliasa około 1960 roku.

    Spis treści

  • 1 Historia
  • 2 Arytmetyka dziesiętna
  • 3 Operacje arytmetyczne
  • 4 Arytmetyka w edukacji
  • 5 Zobacz też
  • 6 Uwagi
  • 7 Przypisy
  • Historia[]

    Nasza wiedza o prehistorii arytmetyki jest ograniczona do kilku niewielkich artefaktów udowadniających posługiwanie się pojęciami dodawania i odejmowania przez ludy neolityczne. Najbardziej znanym jest Kość z Ishango, który według Petera Rudmana powstał pomiędzy 9000 a 6500 lat p.n.e.

    Prawdopodobnie Babilończycy posiadali szeroką wiedzę w niemal wszystkich aspektach elementarnej arytmetyki już dwa tysiące lat przed naszą erą (patrz Plimpton 322). W papirusach ze starożytnego Egiptu pochodzących z XVII wieku p.n.e. można znaleźć dokładne algorytmy mnożenia i używania ułamków.

    Kolejność wykonywania działań (w terminologii uniwersyteckiej reguły opuszczania nawiasów) – konwencja skracająca zapis matematyczny.Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.

    Pitagorejczycy w szóstym wieku p.n.e. uznawali arytmetykę za jedną z czterech najważniejszych nauk. Znalazło to odbicie również w programie średniowiecznych uniwersytetów jako element Quadrivium, które razem z Trivium utworzyło siedem sztuk wyzwolonych.

    Współczesne algorytmy arytmetyczne (zarówno do obliczeń pisemnych, jak i elektronicznych) opierają się na cyfrach arabskich i pozycyjnym systemie liczbowym. Choć dziś stosowany jest w większości języków i kultur (mimo że istnieją naturalne systemy liczbowe), jego prostota jest kulminacją tysięcy lat rozwoju matematyki. Przykładowo Archimedes poświęcił całą pracę O liczeniu piasku wymyśleniu notacji dla zapisu wielkich liczb. Rozwój algebry w średniowiecznym świecie islamskim i w renesansowej Europie został umożliwiony przez znaczne uproszczenie obliczeń w systemie dziesiętnym.

    Ciąg arytmetyczny – ciąg liczbowy, w którym każdy wyraz można otrzymać dodając wyraz bezpośrednio go poprzedzający oraz ustaloną liczbę, zwaną różnicą ciągu. Zwykle mówiąc o ciągu arytmetycznym zakładamy, iż jego wyrazy są liczbami rzeczywistymi, choć sporadycznie rozważa się również ciągi arytmetyczne o wyrazach zespolonych.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Kultura (z łac. colere = „uprawa, dbać, pielęgnować, kształcenie”) – termin ten jest wieloznaczny, pochodzi od łac. cultus agri („uprawa roli”), interpretuje się go w wieloraki sposób przez przedstawicieli różnych nauk. Kulturę można określić jako ogół wytworów ludzi, zarówno materialnych, jak i niematerialnych: duchowych, symbolicznych (takich jak wzory myślenia i zachowania).
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.
    Pitagorejczycy – wyznawcy doktryny rozwiniętej przez Pitagorasa i jego następców w szkole religijno-filozoficznej, którą założył w Krotonie w Wielkiej Grecji, w południowych Włoszech. Część z poglądów może być jedynie przypisywana Pitagorasowi, natomiast szereg innych osób związanych ze szkołą opublikowało własne dzieła lub przeszło do historii z powodu swych osiągnięć.
    Kość Ishango – narzędzie wykonane z kości datowane na epokę górnego paleolitu. Jest to ciemnobrązowa długa kość strzałkowa pawiana, z umieszczonym na jednym z końców ostrym kawałkiem kwarcu, który być może służył do grawerowania. Na kości tej wykonano trzy rzędy pogrupowanych po kilka, kilkanaście nacięć rysami różnej długości.
    Odejmowanie – jedno z czterech podstawowych działań arytmetycznych, działanie odwrotne do dodawania. Odejmowane obiekty to odpowiednio odjemna i odjemnik, wynik zaś nazywany jest różnicą.
    Mnożenie – działanie dwuargumentowe będące jednym z czterech podstawowych działań arytmetycznych. Mnożone elementy to czynniki (określane również jako mnożna i mnożnik), a jego wynik to iloczyn. Może być ono traktowane jako zapis wielokrotnego dodawania elementu do siebie.

    Reklama