• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Aproksymacja



    Podstrony: [1] [2] [3] 4 [5]
    Przeczytaj także...
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).
    Zagadnienia aproksymacji funkcji[ | edytuj kod]

    Aproksymację stosuje się w sytuacjach, gdy nie istnieje analityczna postać funkcji, która pozwalałaby na wyznaczenie wartości dla dowolnego z jej argumentów, a jednocześnie wartości tej nieznanej funkcji są dla pewnego zbioru jej argumentów znane. Z przypadkiem takim mamy do czynienia np. w meteorologii przy sporządzaniu map synoptycznych na podstawie wyników pomiarów terenowych.

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Wydawnictwa Naukowo-Techniczne (WNT) – polskie wydawnictwo założone w 1949 z siedzibą w Warszawie, do 1961 działało pod firmą Państwowe Wydawnictwa Techniczne.

    Aproksymowanie funkcji może polegać na przybliżaniu jej za pomocą kombinacji liniowej tzw. funkcji bazowych. Od funkcji aproksymującej, przybliżającej daną funkcję nie wymaga się, aby przechodziła ona przez jakieś konkretne punkty, tak jak to ma miejsce w interpolacji. Z matematycznego punktu widzenia aproksymacja funkcji w pewnej przestrzeni Hilberta jest zagadnieniem polegającym na poszukiwaniu pewnej funkcji gdzie jest podprzestrzenią takiej, by odległość (w sensie obowiązującej w normy) między a była jak najmniejsza.

    Regresja liniowa – metoda estymowania wartości oczekiwanej zmiennej y {displaystyle y} przy znanych wartościach innej zmiennej lub zmiennych x {displaystyle x} . Szukana zmienna y {displaystyle y} jest tradycyjnie nazywana zmienną objaśnianą lub zależną. Inne zmienne x {displaystyle x} nazywa się zmiennymi objaśniającymi lub niezależnymi. Zarówno zmienne objaśniane i objaśniające mogą być wielkościami skalarnymi lub wektorami.Aproksymacja średniokwadratowa – aproksymacja, której celem jest minimalizacja błędu na przedziale [ a , b ] {displaystyle [a,b]} . Istotność błędu w poszczególnych punktach mierzy się za pomocą funkcji wagowej w ( x ) {displaystyle w(x)} . Jeśli funkcję f ( x ) {displaystyle f(x)} próbuje się przybliżać za pomocą g ( x ) {displaystyle g(x)} , to minimalizuje się błąd:

    Aproksymacja funkcji powoduje pojawienie się błędów, zwanych błędami aproksymacji. Dużą zaletą aproksymacji w stosunku do interpolacji jest to, że aby dobrze przybliżać, funkcja aproksymująca nie musi być wielomianem wysokiego stopnia (w ogóle nie musi być wielomianem). Przybliżenie w tym wypadku rozumiane jest jako minimalizacja pewnej funkcji błędu. Prawdopodobnie najpopularniejszą miarą tego błędu jest średni błąd kwadratowy, ale możliwe są również inne funkcje błędu, jak choćby błąd średni.

    Funkcja sklejana (ang. spline, postulowana nazwa polska splajn) stopnia s {displaystyle s} , to dowolna funkcja S {displaystyle S} określona na przedziale [ a , b ] {displaystyle [a,b]} spełniająca warunki:Aproksymacja diofantyczna – dziedzina teorii liczb badająca możliwości przybliżania liczb rzeczywistych liczbami wymiernymi i stopień dokładności takiego przybliżenia.

    Istnieje wiele metod aproksymacyjnych. Jednymi z najbardziej popularnych są: aproksymacja średniokwadratowa i aproksymacja jednostajna oraz aproksymacja liniowa, gdzie funkcją bazową jest funkcja liniowa.

    Funkcja aproksymująca może być przedstawiona w różnej postaci. Najczęściej jest to postać:

  • wielomianu (tzw. aproksymacja wielomianowa),
  • funkcji sklejanych,
  • funkcji matematycznych uzyskanych na drodze statystyki matematycznej (przede wszystkim regresji),
  • sztucznych sieci neuronowych.
  • Aproksymację można formułować również przy rozwiązywaniu zagadnień dwu- i trójwymiarowych.

    Przestrzeń unormowana – przestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.Wielka Encyklopedia Rosyjska (ros. Большая российская энциклопедия, БРЭ) – jedna z największych encyklopedii uniwersalnych w języku rosyjskim, wydana w 36 tomach w latach 2004–2017. Wydana przez spółkę wydawniczą o tej samej nazwie, pod auspicjami Rosyjskiej Akademii Nauk, na mocy dekretu prezydenckiego Władimira Putina nr 1156 z 2002 roku

    Zobacz też[ | edytuj kod]

  • aproksymacja diofantyczna
  • aproksymacja punktowa
  • krzywa Béziera
  • metoda Sheparda
  • zaokrąglanie


  • Podstrony: [1] [2] [3] 4 [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Sieć neuronowa (sztuczna sieć neuronowa) – ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych modeli, realizujących obliczenia lub przetwarzanie sygnałów poprzez rzędy elementów, zwanych sztucznymi neuronami, wykonujących pewną podstawową operację na swoim wejściu. Oryginalną inspiracją takiej struktury była budowa naturalnych neuronów, łączących je synaps, oraz układów nerwowych, w szczególności mózgu.
    Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory. W przypadku funkcji nieskończenie wiele razy różniczkowalnych, przedstawienie oparte na tej własności może przyjąć postać szeregu zwanego szeregiem Taylora. Poniżej podane jest uogólnione twierdzenie Taylora dla funkcji o wartościach w dowolnych przestrzeniach unormowanych – w szczególności jest więc ono prawdziwe dla funkcji o wartościach rzeczywistych czy wektorowych.
    Aproksymacja punktowa to rodzaj aproksymacji pozwalający przybliżyć zbiór punktów funkcją ciągłą. Aproksymacja ta, w odróżnieniu od większości innych metod aproksymacji, nie wymaga znajomości postaci analitycznej funkcji aproksymowanej. W poszukiwaniu rozwiązania przyjmuje się pewną znaną funkcję a następnie dopasowuje parametry w taki sposób aby wynik jak najbardziej „pasował” do zadanych punktów, które najczęściej pochodzą z pomiarów i już ze swej natury są obarczone błędami.
    Przestrzeń unitarna (prehilbertowska) – w matematyce, przestrzeń liniowa wyposażona dodatkowo w iloczyn skalarny będący uogólnieniem standardowego iloczynu skalarnego. Przestrzenie unitarne można traktować jako naturalne odpowiedniki przestrzeni euklidesowych, w których możliwe jest zdefiniowanie (bądź uogólnienie) takich pojęć jak kąt, długość wektora (dokładniej norma elementu przestrzeni unitarnej) czy wreszcie ortogonalności elementów. Przestrzenie unitarne, zupełne ze względu na metrykę generowaną przez normę (zależną od iloczynu skalarnego), nazywane są przestrzeniami Hilberta i studiowane są w analizie funkcjonalnej. W związku z tym przestrzenie unitarne nazywane są czasem prehilbertowskimi.
    Interpolacja – metoda numeryczna polegająca na wyznaczaniu w danym przedziale tzw. funkcji interpolacyjnej, która przyjmuje w nim z góry zadane wartości w ustalonych punktach, nazywanych węzłami. Stosowana jest ona często w naukach doświadczalnych, gdzie dysponuje się zazwyczaj skończoną liczbą danych do określenia zależności między wielkościami oraz w celu uproszczenia skomplikowanych funkcji, np. podczas całkowania numerycznego. Interpolacja jest szczególnym przypadkiem metod numerycznych typu aproksymacja.
    Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.
    Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.

    Reklama

    Czas generowania strony: 0.015 sek.