• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Analiza funkcjonalna

    Przeczytaj także...
    Miara spektralna - w analizie funkcjonalnej, przeliczalnie addytywna miara wektorowa, określona na σ-ciele podzbiorów pewnej przestrzeni topologicznej o wartościach w zbiorze operatorów rzutowych pewnej ośrodkowej przestrzeni Hilberta, przyporządkowująca całej przestrzeni operator jednostkowy. John von Neumann zbudował współczesną mechanikę kwantową na teorii miar spektralnych.Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).
    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Analiza funkcjonalna – dział analizy matematycznej zajmujący się głównie badaniem własności przestrzeni funkcyjnych. Rozwinął się w trakcie studiów nad odwzorowaniami zwanymi transformacjami lub operatorami (przede wszystkim nad transformacją Fouriera) oraz równaniami różniczkowymi i całkowymi.

    Całka – ogólne określenie wielu różnych, choć powiązanych ze sobą pojęć analizy matematycznej. W artykule rachunek różniczkowy i całkowy podana jest historia ewolucji znaczenia samego słowa całka. Najczęściej przez "całkę" rozumie się całkę oznaczoną lub całkę nieoznaczoną (rozróżnia się je zwykle z kontekstu).Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).

    Słowo funkcjonał pochodzi z rachunku wariacyjnego, gdzie oznacza funkcję, której argument jest funkcją (ale wartość jest liczbą). Prawdopodobnie, od słowa "funkcjonał" pochodzi nazwa "analiza funkcjonalna", chociaż w niej bada się także bardziej ogólne operatory, których zarówno argumenty jak i wartości są wektorami (to znaczy wartość może nie być liczbą).

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.

    Analiza funkcjonalna została rozpowszechniona przez matematyka i fizyka Vito Volterrę, zaś jej podstawy zostały stworzone przez polskiego matematyka Stefana Banacha.

    Przestrzenie badane w analizie funkcjonalnej[]

    W ogólności analiza funkcjonalna zajmuje się również badaniem przestrzeni Frécheta i innych przestrzeni liniowo-topologicznych. Podstawowymi przestrzeniami badanymi w analizie funkcjonalnej są jednak unormowane zupełne przestrzenie liniowe nad ciałem liczb rzeczywistych lub zespolonych. Takie przestrzenie noszą nazwę przestrzeni Banacha.

    Vito Volterra (ur. 3 maja 1860 w Ankonie, zm. 11 października 1940 w Rzymie) – włoski matematyk i fizyk, profesor Uniwersytetów w Pizie, Turynie i Rzymie, znany z jego wkładu w opracowanie matematycznych modeli zastosowanych w biologii.Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.

    Przykładami przestrzeni Banacha są przestrzenie Hilberta, w których norma pochodzi od iloczynu skalarnego. Przestrzenie Hilberta mają podstawowe znaczenie w matematycznym sformułowaniu mechaniki kwantowej.

    Ważnym obiektem badań analizy funkcjonalnej są ciągłe przekształcenia (funkcjonały) liniowe na przestrzeniach Banacha i Hilberta. Badania własności przestrzeni takich funkcjonałów doprowadziły do sformułowania pojęć C*-algebr i innych algebr operatorów.

    Przestrzenie badane w analizie funkcjonalnej są w szczególności przestrzeniami liniowymi, więc w pewnym sensie przedmiot badań analizy funkcjonalnej jest zbliżony do przedmiotu badań algebry liniowej. Niemniej jednak badania w tych dwóch dziedzinach mają całkiem różny charakter, głównie dlatego, że algebra liniowa jest zainteresowana własnościami algebraicznymi badanych przestrzeni i często ogranicza się do przestrzeni skończeniewymiarowych. W analizie funkcjonalnej struktura algebraiczna (choć ważna) ma drugorzędne znaczenie a centralnymi obiektami są topologie, normy i iloczyny skalarne. Stąd też większość rozważanych przestrzeni jest nieskończeniewymiarowa a stosowane metody mają często topologiczny czy nawet teoriomnogościowy charakter.

    Twierdzenie o wykresie domkniętym – jedno z podstawowych twierdzeń klasycznej analizy funkcjonalnej, charakteryzujące ciągłe przekształcenia liniowe między F-przestrzeniami, a więc w szczególności między przestrzeniami Banacha.Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.

    Najważniejsze wyniki[]

    Poniżej są wymienione główne i podstawowe wyniki z dziedziny analizy funkcjonalnej.

  • Twierdzenie Banacha-Steinhausa (znane również jako zasada jednostajnej ograniczoności) dotyczy ograniczonych zbiorów operatorów.
  • Twierdzenie spektralne podaje reprezentację operatorów samosprzężonych na przestrzeni Hilberta poprzez całki względem specjalnych miar spektralnych. Ma ono centralne znaczenie w matematycznym sformułowaniu mechaniki kwantowej.
  • Twierdzenie Hahna-Banacha mówi o rozszerzaniu funkcjonałów z podprzestrzeni na całą przestrzeń, z zachowaniem normy. Jednym z wniosków jest nietrywialność przestrzeni dualnych.
  • Twierdzenie Banacha o odwzorowaniu otwartym oraz twierdzenie o wykresie domkniętym.
  • Zobacz też[]

  • operator liniowy
  • operator nieliniowy
  • widmo operatora
  • Stefan Banach (ur. 30 marca 1892 w Krakowie, zm. 31 sierpnia 1945 we Lwowie) – polski matematyk, jeden z przedstawicieli lwowskiej szkoły matematycznej.Rachunek wariacyjny - dziedzina analizy matematycznej zajmująca się szukaniem ekstremów funkcjonałów określonych na przestrzeniach funkcyjnych.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    C*-algebra (czyt. ce-gwiazdka-algebra; czasami algebra typu C*) – zespolona algebra Banacha A z dodatkowym działaniem inwolucji *: A → A (A jest więc *-algebrą), spełniającym warunek
    Przestrzeń Banacha – przestrzeń unormowana X (z normą ||·||), w której metryka wyznaczona przez normę, tj. metryka d dana wzorem
    Twierdzenie spektralne – wspólna nazwa twierdzeń w algebrze liniowej i analizie funkcjonalnej uogólniających twierdzenie teorii macierzy mówiące, że
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
    Twierdzenie Hahna-Banacha – podstawowe twierdzenie analizy funkcjonalnej sformułowane i udowodnione niezależnie przez Hansa Hahna i Stefana Banacha w latach 20. XX wieku.
    Twierdzenie o odwzorowaniu otwartym - twierdzenie podające warunek wystarczający na to by ciągły operator liniowy działający między F-przestrzeniami (a więc w szczególności przestrzeniami Banacha) był odwzorowaniem otwartym.
    Twierdzenie Banacha-Steinhausa (zasada jednostajnej ograniczoności) – twierdzenie analizy funkcjonalnej mówiące, w swym klasycznym sformułowaniu, że granica punktowa ciągu operatorów liniowych i jednakowo ciągłych między przestrzeniami Banacha jest ciągłym operatorem liniowym. Twierdzenie Banacha-Steinhausa można sforumułować ogólniej, aby uwypuklić istotność założeń wersji klasycznej.

    Reklama

    Czas generowania strony: 0.018 sek.