• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Algebra uniwersalna

    Przeczytaj także...
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Algebra – jeden z najstarszych działów matematyki, powstały już w starożytności. Zajmuje się on algebrami ogólnymi i relacjami. Algebra elementarna zajmuje się takimi działaniami jak dodawanie i mnożenie; wprowadza pojęcie zmiennej i wielomianu razem z jego rozkładem na czynniki (faktoryzacją) i znajdowaniem ich pierwiastków, choć algebra jest działem bardziej ogólnym (patrz podział algebry).
    Operacją n-arną (działaniem n-arnym) ω {displaystyle omega } w zbiorze G dla liczby całkowitej n > 0 nazywamy funkcję, która każdemu ciągowi (a1, ..., an) n elementów zbioru G przyporządkowuje element a1...an ω {displaystyle omega } zbioru G. Innymi słowy jest to dowolne odwzorowanie n-tego iloczynu kartezjańskiego G zbioru G w zbiór G. W przypadku n = 1 będzie to dowolne odwzorowanie zbioru G w zbiór G (taką operację nazywamy operacją unarną).

    Algebra uniwersalna – dział matematyki zajmujący się badaniem ogólnych struktur algebraicznych, nazywany również w niektórych publikacjach algebrą ogólną. Algebra uniwersalna wraz z teorią kategorii stanowią matematyczne podstawy teorii specyfikacji algebraicznych. Podstawowym pojęciem algebry uniwersalnej jest pojęcie algebry (nazywanej często algebrą uniwersalną; wtedy cały dział nazywa się algebrą ogólną), zbioru A wyposażonego w pewien zbiór operacji n-arnych nazywany sygnaturą. Każda struktura algebraiczna (grupoid, półgrupa, grupa, pierścień, ciało itd.) jest pewną algebrą.

    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.

    Zobacz też[]

  • algebra
  • Przypisy

    1. Stanley N. Burris, H.P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, 1981. ISBN 3-540-90578-2.
    2. А. Г. Курош: Общая алгебра. Лекции 1969-1970 учебного года. Wyd. 1. Наука, 1974, s. 5-10.
    3. Л. А. Скорняков: Элементы общей алгебры. Wyd. 1. Наука, 1983, s. 31-32.

    Bibliografia[]

  • Burris, Stanley N., and H.P. Sankappanavar, H. P., 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2. (monografia dostępna w sieci)
  • А. Г. Курош: Общая алгебра. Лекции 1969-1970 учебного года. Wyd. 1. Наука, 1974.
  • Л. А. Скорняков: Элементы общей алгебры. Wyd. 1. Наука, 1983.



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.013 sek.