• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Algebra liniowa

    Przeczytaj także...
    Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).Programowanie liniowe – klasa problemów programowania matematycznego, w której wszystkie warunki ograniczające oraz funkcja celu mają postać liniową. Warunki ograniczające mają postać:
    Andrzej Stanisław Mostowski (ur. 1 listopada 1913 we Lwowie, zm. 22 sierpnia 1975 w Vancouver, Kanada) – polski matematyk zajmujący się głównie podstawami matematyki, przedstawiciel warszawskiej szkoły matematycznej.

    Algebra liniowa – dział algebry zajmujący się badaniem przestrzeni liniowych oraz ich homomorfizmów, tj. przekształceń liniowych. Algebra liniowa skupia się głównie na badaniu przestrzeni skończenie wymiarowych nad ciałami lub ogólniej, pierścieniami. Do algebry liniowej można zaliczyć także teorię form kwadratowych, macierzy, przekształceń półtora- i wieloliniowych. Dziedzina ta wyrosła w sposób naturalny na gruncie badania układów równań liniowych.

    Forma kwadratowa albo funkcjonał kwadratowy – w algebrze liniowej szczególna forma (funkcjonał) określona na danej przestrzeni liniowej (tzn. funkcja w ciało jej skalarów), mianowicie jednorodna stopnia 2 funkcja wielomianowa drugiego stopnia.Ekonomia – nauka społeczna analizująca oraz opisująca produkcję, dystrybucję oraz konsumpcję dóbr. Słowo „ekonomia” wywodzi się z języka greckiego i tłumaczy się jako oikos, co znaczy dom i nomos, czyli prawo, reguła. Starożytni Grecy stosowali tę definicję do określania efektywnych zasad funkcjonowania gospodarstwa domowego.

    Algebra liniowa ma liczne zastosowania zarówno w matematyce (np. równania różniczkowe, programowanie liniowe), jak i poza nią, np. w ekonomii metody przez nią wypracowane są stosowane do skutecznego modelowania i rozwiązywania problemów związanych z alokacją zasobów.

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Homomorfizm – funkcja odwzorowująca jedną algebrę ogólną (czyli strukturę algebraiczną taką jak grupa, pierścień czy przestrzeń wektorowa) w drugą, zachowująca przy tym odpowiadające sobie operacje. Jest to podstawowe narzędzie w badaniu i porównywaniu algebr.

    Bibliografia[]

  • Grzegorz Banaszak, Wojciech Gajda: Elementy algebry liniowej Tom 1 i 2, Wydawnictwo Naukowo-Techniczne 2002
  • Andrzej Białynicki-Birula: Algebra liniowa z geometrią, PWN, Warszawa 1979
  • Aleksiej I. Kostrykin: Wstęp do algebry: Algebra liniowa, PWN, Warszawa 2004
  • Andrzej Mostowski, Marceli Stark: Algebra liniowa, PWN, Warszawa 1968
  • Jacek Gancarzewicz: Algebra liniowa i jej zastosowania, UJ, Kraków 2009
  • Linki zewnętrzne[]

  • Algebra liniowa z geometrią analityczną (materiały dydaktyczne przygotowane w ramach projektu Opracowanie programów nauczania na odległość na kierunku studiów wyższych – Informatyka.)
  • Przekształcenie wieloliniowe – w algebrze liniowej funkcja określona na iloczynie kartezjańskim przestrzeni liniowych w daną przestrzeń liniową (nad ustalonym ciałem), która jest liniowa ze względu na każdy argument z osobna. Jeżeli docelową przestrzeń liniową zastąpi się ciałem, nad którymi zbudowane są przestrzenie liniowe dziedziny, to tego rodzaju funkcje te nazywa się formami wieloliniowymi.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Andrzej Białynicki-Birula (ur. 26 grudnia 1935 w Nowogródku) – polski matematyk specjalizujący się w geometrii algebraicznej, jeden z pionierów algebry różniczkowej, profesor zwyczajny, członek rzeczywisty PAN, autor podręczników uniwersyteckich do algebry. Jego wczesne wyniki dotyczyły obszaru na granicy logiki i algebry. Współpracował wówczas z Heleną Rasiową. Opublikował też pracę naukową dotyczącą topologii algebraicznej.
    Algebra – jeden z najstarszych działów matematyki, powstały już w starożytności. Zajmuje się on algebrami ogólnymi i relacjami. Algebra elementarna zajmuje się takimi działaniami jak dodawanie i mnożenie; wprowadza pojęcie zmiennej i wielomianu razem z jego rozkładem na czynniki (faktoryzacją) i znajdowaniem ich pierwiastków, choć algebra jest działem bardziej ogólnym (patrz podział algebry).
    Forma półtoraliniowa albo funkcjonał półtoraliniowy – w algebrze liniowej i analizie funkcjonalnej przekształcenie półtoraliniowe danej zespolonej przestrzeni liniowej w ciało jej skalarów, czyli dwuargumentowy funkcjonał, który jest liniowy ze względu na jeden parametr (zob. funkcjonał liniowy) i antyliniowy ze względu na drugi.
    Układ równań liniowych – koniunkcja pewnej liczby (być może nieskończonej) równań liniowych, czyli równań pierwszego rzędu.
    Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.
    Alokacja zasobów w gospodarce rozumiana jest przez wykaz lub wyczerpujący opis tego, co kto robi oraz kto co dostaje. Zakres możliwości alokacyjnych jest zależny od stanu techniki i wielkości zasobów w gospodarce. Ostateczna wartość alokacji zależna jest od gustów klienta, które decydują, jak ludzie oceniają to, co otrzymują.
    Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.

    Reklama