• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Aksjomat



    Podstrony: 1 [2] [3] [4] [5] [6]
    Przeczytaj także...
    Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.

    Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:

    Aksjomat Archimedesa - aksjomat geometrii głoszący, że każdy odcinek jest krótszy od pewnej wielokrotności długości każdego innego odcinka. Z niego wynika nieograniczoność prostej. Został on wbrew nazwie sformułowany po raz pierwszy przez Eudoksosa, a nazwany w ten sposób przez Otto Stoltza w 1883. Geometrie nie spełniające go zwane są niearchimedesowymi.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Aksjomaty są zdaniami wyodrębnionymi spośród wszystkich twierdzeń danej teorii, wybranymi tak, aby wynikały z nich wszystkie pozostałe twierdzenia tej teorii. Taki układ aksjomatów nazywany jest aksjomatyką.

    Spis treści

  • 1 Wyjaśnienie pojęcia aksjomatu
  • 2 Modelowanie
  • 3 Prawdziwość
  • 4 Niesprzeczność
  • 5 Niezależność
  • 6 Zupełność
  • 7 Kategoryczność
  • 8 Historia
  • 9 Zobacz też
  • 10 Przypisy
  • 11 Bibliografia
  • Wyjaśnienie pojęcia aksjomatu[]

    Matematyka jest zbiorem różnych teorii, takich jak geometria euklidesowa czy arytmetyka. Każda z nich operuje na specyficznym dla siebie zasobie pojęć. Matematycy mówią, że dana teoria jest wyrażona w języku opartym na określonym alfabecie.

    Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).Kurt Gödel (ur. 28 kwietnia 1906 w Brnie, zm. 14 stycznia 1978 w Princeton) – austriacki logik i matematyk, autor twierdzeń z zakresu logiki matematycznej, współautor jednej z aksjomatyk teorii mnogości. Do najbardziej znanych osiągnięć matematycznych Gödla należą twierdzenia o niezupełności i niesprzeczności teorii dedukcyjnych, które obejmują arytmetykę liczb naturalnych.
    Przykład: elementami alfabetu geometrii (termami geometrii) mogą być:
  • symbol relacyjny . Jeśli jest prawdą, będziemy mówili, że to punkt,
  • symbol relacyjny . Jeśli jest prawdą, będziemy mówili, że to prosta,
  • symbol relacyjny . Jeśli jest prawdą, będziemy mówili, że punkt leży na prostej .
  • We wcześniejszych ujęciach logiki matematycznej powiedzielibyśmy, że punkt, prosta i relacja "punkt leży na prostej" są pojęciami pierwotnymi geometrii. Obecnie takie sformułowanie spotyka się coraz rzadziej.

    Elementów tego alfabetu nie definiuje się formalnie podczas konstrukcji danej teorii. W naszym przypadku potrzebujemy tylko wiedzieć, że dla dowolnego rozważanego obiektu każdy z symboli relacyjnych może być prawdą lub fałszem. Konkretny sens jest im nadawany dopiero w procesie tworzenia modelu teorii, o czym dalej.

    Formuła logiczna to określenie dozwolonego wyrażenia w wielu systemach logicznych, m.in. w rachunku kwantyfikatorów oraz w rachunku zdań.Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.

    Teoria w logice jest zbiorem twierdzeń opisujących pewne relacje między jej pojęciami. Formalnie są to formuły zdaniowe, zapisywane w języku danej teorii z użyciem symboli jej języka i dodatkowo symboli logicznych, takich jak np. kwantyfikatory. Przykład: twierdzenie geometryczne „Przez dwa dowolne punkty można przeprowadzić prostą” można formalnie zapisać następująco: czyli: Jeśli i są punktami, to istnieje taka prosta , że oraz leżą na .

    Niektóre z tych twierdzeń dają się wyprowadzić z innych twierdzeń danej teorii. Dowodząc jakiegoś twierdzenia, musimy oprzeć dowód na innych twierdzeniach, które z kolei także należałoby udowodnić itd. Jeśli więc jakikolwiek dowód ma mieć skończoną długość, potrzeba jakichś zdań, których prawdziwość przyjmowalibyśmy bez dowodu. Takie zdania nazywane są aksjomatami, ich zbiór aksjomatyką.

    Rachunek predykatów pierwszego rzędu – (ang. first order predicate calculus) to system logiczny, w którym zmienna, na której oparty jest kwantyfikator, może być elementem pewnej wybranej dziedziny (zbioru), nie może natomiast być zbiorem takich elementów. Tak więc nie mogą występować kwantyfikatory typu "dla każdej funkcji z X na Y ..." (gdyż funkcja jest podzbiorem X × Y), "istnieje własność p, taka że ..." czy "dla każdego podzbioru X zbioru Z ...". Rachunek ten nazywa się też krótko rachunkiem kwantyfikatorów, ale często używa się też nazwy logika pierwszego rzędu (szczególnie wśród matematyków zajmujących się logiką matematyczną).Twierdzenie Pappusa – ważne twierdzenie geometrii euklidesowej, nazwane od Pappusa z Aleksandrii. Występuje w kilku wersjach:

    Dana teoria może być zaksjomatyzowana na wiele różnych sposobów, przykładem jest tu geometria euklidesowa, dla której oprócz aksjomatów Euklidesa istnieje też aksjomatyka Hilberta i von Neumanna. Te dwie ostatnie są sobie równoważne, to znaczy każdą można wyprowadzić z tej drugiej. Aksjomatyka Euklidesa jest uboższa od nich, właściwie nie opisuje pełnej teorii geometrii euklidesowej, a jedynie jej podzbiór. Przykładem twierdzenia geometrycznego niedającego się wyprowadzić z aksjomatów Euklidesa jest twierdzenie Pappusa-Pascala.

    Twierdzenie Desargues’a – jedno z pierwszych twierdzeń geometrii rzutowej, sformułowane i udowodnione w XVII wieku przez francuskiego matematyka Gerarda Desargues’a. Wraz z twierdzeniem Pascala stanowi przykład twierdzenia, które jest niezależne od oryginalnego układu aksjomatów geometrii podanego przez Euklidesa – oznacza to, że nie da się go udowodnić ani obalić, bez przyjęcia dodatkowych założeń.John von Neumann (ur. 28 grudnia 1903 w Budapeszcie, zm. 8 lutego 1957 w Waszyngtonie) – węgierski matematyk, inżynier chemik, fizyk i informatyk, pracujący głównie w Stanach Zjednoczonych. Wniósł znaczący wkład do wielu dziedzin matematyki – w szczególności był głównym twórcą teorii gier, teorii automatów komórkowych (w które pewien początkowy wkład miał także Stanisław Ulam) i stworzył formalizm matematyczny mechaniki kwantowej. Uczestniczył w projekcie Manhattan. Przyczynił się do rozwoju numerycznych prognoz pogody.

    Formalnie aksjomatem może być dowolna niesprzeczna wewnętrznie formuła zdaniowa wyrażona w języku danej teorii. Wszelkie stosowane w praktyce aksjomaty są jednak zdaniami zawsze prawdziwymi w obrębie danej teorii (tautologiami), są wzajemnie niesprzeczne i odpowiadają również węższym definicjom podanym w poprzednim akapicie i na początku artykułu. Zwykle aksjomatyka jest też kategoryczna. Powody ku temu zostaną wyjaśnione w dalszej części artykułu.

    Arytmetyka (łac. arithmetica, gr. αριθμητική arithmētikē, od αριθμητικός arithmētikos – arytmetyczna, od αριθμειν arithmein – liczyć, od αριθμός arithmós – liczba; spokr. ze staroang. rīm – liczba, i być z gr. αραρισκειν arariskein – pasować) – jedna z najstarszych część matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).Kwantyfikator – termin przyjęty w matematyce i logice matematycznej na oznaczenie zwrotów: dla każdego, istnieje takie i im pokrewnych, a także odpowiadającym im symbolom wiążacym zmienne w formułach. Są podstawowym elementem w rozwoju logiki pierwszego rzędu.


    Podstrony: 1 [2] [3] [4] [5] [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Język w logice matematycznej to pewien zbiór symboli, przy użyciu których można tworzyć bardziej złożone wyrażenia (na przykład formuły, zdania) według ściśle określonych reguł syntaktycznych. Przyjmuje się, że w danym języku L mogą występować (w dowolnej ilości) symbole funkcyjne, relacyjne oraz symbole stałych. Zdania napisane przy użyciu języków tego typu wystarczają do opisu większości własności dowolnych struktur matematycznych oraz do wyrażenia twierdzeń mówiących o tych strukturach.
    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.
    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.
    Alfred Tarski wł. Alfred Tajtelbaum (ur. 14 stycznia 1901 w Warszawie, zm. 26 października 1983 w Berkeley, Kalifornia, USA) – polski logik pracujący od 1939 r. w Stanach Zjednoczonych. Twórca m.in. teorii modeli i semantycznej definicji prawdy, uważany jest współcześnie za jednego z najwybitniejszych logików wszech czasów.
    Twierdzenie Gödla to jeden z najbardziej znanych rezultatów logiki matematycznej. W istocie znane są dwa różne twierdzenia Gödla: pierwsze z nich to twierdzenie o niezupełności, drugie zaś to jego wniosek nazywany też twierdzeniem o niedowodliwości niesprzeczności. Oba twierdzenia zostały udowodnione w 1931 roku przez austriackiego matematyka i logika Kurta Gödla. Uważa się również, że twierdzenia te dają negatywną odpowiedź na drugi problem Hilberta, i w ten sposób mają spore znaczenie w filozofii matematyki. Oprócz rozpatrywanych w tym artykule twierdzeń, Gödel udowodnił też twierdzenie o istnieniu modelu i twierdzenie o nierozstrzygalności (patrz: teoria, struktura matematyczna).
    Logika matematyczna – dział matematyki, który wyodrębnił się jako samodzielna dziedzina na przełomie XIX i XX wieku, wraz z dążeniem do dogłębnego zbadania podstaw matematyki. Koncentruje się ona na analizowaniu zasad rozumowania oraz pojęć z nim związanych z wykorzystaniem sformalizowanych oraz uściślonych metod i narzędzi matematyki.
    Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.

    Reklama