Accelerated Graphics Port
Podstrony: 1 [2] [3] [4]
PCI-X (ang. Peripheral Component Interconnect eXtended) – rozszerzenie znanego standardu magistrali PCI, wykorzystywane najczęściej w konstrukcjach systemów serwerowych. Socket 7 jest fizyczną i elektryczną specyfikacją gniazd przeznaczonych dla procesorów Pentium firmy Intel oraz dla procesorów z nimi kompatybilnych. Zastąpił gniazdo typu Socket 5, w stosunku do którego dodano jeden dodatkowy pin i wprowadzono drugie napięcie zasilające procesor. Zachowano kompatybilność wsteczną, więc każdy procesor typu Socket 5 może być umieszczony w podstawce Socket 7.
AGP (ang. Accelerated Graphics Port, czasem nazywany Advanced Graphics Port) – zmodyfikowana magistrala PCI opracowana przez firmę Intel, zaprojektowana do obsługi kart graficznych. Jest to 32-bitowa magistrala PCI zoptymalizowana do szybkiego przesyłania dużych ilości danych pomiędzy pamięcią operacyjną a kartą graficzną. Wyparta została przez szybszą „magistralę” PCI Express.
Intel oficjalnie wprowadził opracowaną w 1996 r. magistralę AGP 1.0 (1x, 2x) na rynek wraz z chipsetem Intel 440LX dla procesora Pentium II (Klamath) w dniu 26 sierpnia 1997 r. Ze względu na silną konkurencję ze strony AMD, Cyrix i innych producentów procesorów na platformę Socket 7, Intel był zainteresowany promowaniem nowych procesorów ze złączem krawędziowym Slot 1 i nigdy nie udostępnił wsparcia magistrali AGP w swoich chipsetach dla Socket 7. Pierwszymi chipsetami umożliwiającymi uruchomienie kart AGP na płytach głównych Socket 7 były VIA Apollo VP3, SiS 5591/5591 oraz ALi Aladdin V.
Wersja AGP 2.0 (4x) ukazała się w roku 1998, a wersja AGP 3.0 (8x) w roku 2002 r. Po wprowadzeniu standardu PCI Express w 2004 r., AGP została przez nią praktycznie w ciągu kilku lat całkowicie wyparta. Najbardziej zaawansowanymi i najszybszymi dostępnymi kartami ze złączem AGP są GeForce serii 7950 GT oraz Radeon serii HD 4670.
Podstawowe informacje[ | edytuj kod]
W epoce przed wprowadzeniem akceleratorów graficznych całą pracę związaną z generowaniem obrazu wykonywał procesor główny (CPU). Rozwój grafiki komputerowej doprowadził do sytuacji, w której obliczenia związane z generowaniem obrazu coraz bardziej obciążały CPU. Zaczęto więc konstruować specjalne procesory do przetwarzania danych graficznych, nazywane potocznie akceleratorami. Początkowo akceleratory przyspieszały tworzenie grafiki 2D (np. S3 Trio), wkrótce pojawiły się akceleratory dla grafiki 3D (np. 3dfx Voodoo, Nvidia Riva 128), potrafiące operować teksturami (texture mapping) i buforem głębi (z-buffer).
Dążenie do generowania obrazu o coraz wyższej jakości powodowało wzrost rozmiarów stosowanych tekstur i tym samym wymagało coraz większej ilości pamięci do ich przechowywania. Ze względu na wysoki koszt pamięci video, podnosiło to w istotny sposób cenę kart graficznych. Ponadto, przepustowość magistrali PCI wykorzystywanej do przesyłania tekstur pomiędzy pamięcią operacyjną i kartą graficzną wynosiła maksymalnie 132 MB/s (33 MHz x 32 bity), a ponieważ magistrala PCI oprócz karty graficznej obsługiwała także inne urządzenia (Ultra DMA, karty sieciowe, dźwiękowe itd.), to w praktyce osiągała ok. 50-80% tej wartości.
AGP było rozwiązaniem mającym na celu ominięcie ograniczeń wydajnościowych magistrali PCI oraz wysokich kosztów pamięci VRAM. Jedną z ważniejszych zalet magistrali AGP jest wykorzystanie tzw. sideband adressing. Side band to dodatkowe 8-bitowe pasmo, niezależne od 32-bitowej magistrali danych, które jest wykorzystywane do przekazywania adresów. Dzięki temu można powiedzieć, że AGP rozdziela magistralę adresową od danych (ang. demultiplexing) i stosuje technologię potokową (ang. pipeline), czyli separację fazy adresowania od fazy transmisji danych i tworzenie kolejki żądań transakcji. Umożliwia to pobieranie nowych poleceń jeszcze przed zakończeniem wykonania poprzednich.
Ważnym atrybutem AGP jest możliwość wykorzystania standardowej pamięci operacyjnej RAM komputera do przechowywania i przetwarzania tekstur (DiME - Direct Memory Execute), bez konieczności uprzedniego ładowania ich do lokalnej pamięci na karcie graficznej poprzez magistralę PCI. AGP umożliwia dynamiczne przydzielanie części pamięci operacyjnej na potrzeby systemu graficznego. Jest ona traktowana wówczas jako cześć pamięci video, do której mogą być np. ładowane tekstury. Pozwala to na użycie większych tekstur przy niezwiększonych wymaganiach co do pojemności pamięci na karcie. Maksymalna ilość pamięci operacyjnej dostępna w tym trybie dla karty AGP określana jest jako AGP aperture. Pamięć operacyjna dostępna za pośrednictwem AGP na potrzeby akceleratora graficznego jest widziana przez niego jako liniowa przestrzeń adresowa, choć nie musi być kontynuacją przestrzeni adresowej pamięci video na karcie. Fizycznie przydzielona pamięć może być nieciągła. Translacja adresu fizycznego na liniowy zapewniana jest przez układy płyty głównej, przy użyciu tablicy umieszczonej w pamięci zwanej tablicą GART (ang. Graphics Address Remapping Table).
Rozwiązaniem działającym na zbliżonej zasadzie, tzn. wykorzystania pamięci RAM dla celów układu graficznego było UMA (Unified Memory Architecture), stosowane w niektórych modelach płyt głównych. UMA wykorzystuje do komunikacji wolniejszą magistralę PCI oraz zastępuje bufor ekranu pamięcią RAM. AGP jest magistralą przeznaczoną do współpracy z kartą graficzną i działa niezależnie od PCI. Oprócz braku konieczności współdzielenia magistrali PCI z innymi urządzeniami, bezpośrednie połączenie z kontrolerem pamięci umożliwia także uzyskanie wyższej częstotliwości zegara (66 MHz). W trybie 2x efektywne taktowanie AGP wynosi 133 MHz, a maksymalna teoretyczna przepustowość to 528 MB/s (2 x 66 MHz x 32 bity). Podobną wartość posiada maksymalny teoretyczny transfer do pamięci RAM dla procesorów klasy Pentium (66 MHz x 64 bity).
Podstrony: 1 [2] [3] [4]