• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Środkowa trójkąta



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Środkowe w trójkącie oznaczone kolorem czerwonym.

    Środkowa trójkątaodcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku; czasem tak nazywa się też prostą zawierającą ten odcinek. Trójkąt ma trzy różne środkowe.

    Każda ze środkowych dzieli trójkąt na dwie części o równych polach. Korzystając z twierdzenia Carnota można dowieść, że w trójkącie o bokach , długość środkowej opadającej na bok wynosi:

    Geometria afiniczna - jedna z możliwych geometrii. Podstawową figurą geometryczną w tej geometrii jest (podobnie jak w geometrii euklidesowej) prosta, podstawowym pojęciem jest równoległość dwóch prostych a podstawowym odwzorowaniem tzw. odwzorowanie afiniczne.Twierdzenie Talesa – jedno z najważniejszych twierdzeń geometrii euklidesowej. Tradycja przypisuje jego sformułowanie Talesowi z Miletu.

    Uwaga: Środkowej trójkąta nie należy mylić z linią środkową łączącą środki dwóch boków trójkąta.

    Pole powierzchni (potocznie po prostu powierzchnia figury lub pole figury) – miara, przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.Trójkąt – wielokąt o trzech bokach. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów).

    Spis treści

  • 1 Twierdzenie
  • 1.1 Uwaga
  • 2 Punkt przecięcia środkowych w ujęciu analitycznym
  • 2.1 Równanie wektorowe
  • 2.2 Wyznaczenie przez wektor wodzący
  • 3 Punkt przecięcia środkowych jako środek ciężkości
  • 4 Przypisy


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przystawanie (kongruencja) – w geometrii relacja równoważności figur zdefiniowana poprzez izometrię rozumianą intuicyjnie jako identyczność kształtu i wielkości figury: dwie figury uważa się za przystające (kongruentne), jeśli istnieje izometria między nimi.
    Postulat Euklidesa, postulat równoległości, piąty aksjomat Euklidesa – jeden z aksjomatów geometrii euklidesowej. Ma on postać:
    Kąt (płaski) w geometrii euklidesowej – każda z dwóch części (tj. podzbiorów) płaszczyzny zawartych między dwiema półprostymi (wraz z nimi), nazwanymi ramionami, o wspólnym początku, zwanym wierzchołkiem. Czyli jest to część wspólna dwóch półpłaszczyzn wyznaczonych przez dwie nierównoległe proste, wraz z ich brzegami nazywanymi ramionami; ich punkt przecięcia to wierzchołek).
    Odcinek – w geometrii część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.
    Twierdzenie cosinusów (inaczej wzór cosinusów, twierdzenie Carnota, uogólnione twierdzenie Pitagorasa) – twierdzenie mówiące, że w dowolnym trójkącie na płaszczyźnie, kwadrat długości dowolnego boku jest równy sumie kwadratów długości pozostałych boków, pomniejszonej o podwojony iloczyn długości tych boków i cosinusa kąta zawartego między nimi.
    Geometria absolutna jest geometrią opartą tylko na czterech pierwszych postulatach Euklidesa. Piąty postulat Euklidesa mówi, że przez każdy punkt przechodzi tylko jedna prosta równoległa do danej prostej. Pierwotnym pojęciem jest tu przestrzeń, w skład której wchodzą proste i płaszczyzny. Twierdzenia geometrii absolutnej są prawdziwe zarówno dla geomertii euklidesowej, jak i geometrii nieeuklidesowej.
    Iloczyn skalarny – w matematyce pewna forma dwuliniowa na danej przestrzeni liniowej, tj. dwuargumentowa funkcja o szczególnych własnościach przyporządkowująca dwóm wektorom danej przestrzeni liniowej wartość skalarną. Czasami spotyka się również nazwę iloczyn wewnętrzny, który zwykle odnosi się jednak do ogólnych iloczynów skalarnych wprowadzanych w abstrakcyjnych przestrzeniach liniowych nazywanych wtedy przestrzeniami unitarnymi; przestrzenie afiniczne z wyróżnionym iloczynem skalarnym nazywa się przestrzeniami euklidesowymi.

    Reklama

    Czas generowania strony: 0.023 sek.